chemical dissolution
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 43)

H-INDEX

30
(FIVE YEARS 3)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 65
Author(s):  
Carlos Carlesi ◽  
Robert C. Harris ◽  
Andrew P. Abbott ◽  
Gawen R. T. Jenkin

Currently, the high demand for copper is in direct contrast with the decrease in the mineral grade and, more significantly, the concerns regarding the environmental impact that arise as a result of processing such low-grade materials. Consequently, new mineral processing concepts are needed. This work explores the chemical dissolution of chalcopyrite concentrate at ambient pressure and moderate temperatures in a deep eutectic solvent. Copper and iron are dissolved without changing their oxidation state, without solvent pH change, and stabilized as a chloride complex with no evidence of passivation. Chemical equilibria of the metallic chloride complexes limit the dissolution, and the step that is rate-controlling of the kinetics is the interdiffusion of species in the solvent. The chemical mechanism may involve initial chloride adsorption at positive sites of the solid surface, pointing out the importance of surfaces states on chalcopyrite particles. A model based on a shrinking particle coupled with pseudo-second-order increase in the liquid concentration of copper describes the dissolution kinetics and demonstrates the importance of the liquid to solid ratio. Iron and copper can be recovered separately from the solvent, which highlights that this concept is an interesting alternative to both redox-hydrometallurgy and pyrometallurgy to obtain copper by the processing of chalcopyrite concentrate.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chongbin Zhao ◽  
B.E. Hobbs ◽  
Alison Ord

PurposeThe objective of this paper is to develop a semi-analytical finite element method for solving chemical dissolution-front instability problems in fluid-saturated porous media.Design/methodology/approachThe porosity, horizontal and vertical components of the pore-fluid velocity and solute concentration are selected as four fundamental unknown variables for describing chemical dissolution-front instability problems in fluid-saturated porous media. To avoid the use of numerical integration, analytical solutions for the property matrices of a rectangular element are precisely derived in a purely mathematical manner. This means that the proposed finite element method is a kind of semi-analytical method. The column pivot element solver is used to solve the resulting finite element equations of the chemical dissolution-front instability problem.FindingsThe direct use of horizontal and vertical components of the pore-fluid velocity as fundamental unknown variables can improve the accuracy of the related numerical solution. The column pivot element solver is useful for solving the finite element equations of a chemical dissolution-front instability problem. The proposed semi-analytical finite element method can produce highly accurate numerical solutions for simulating chemical dissolution-front instability problems in fluid-saturated porous media.Originality/valueAnalytical solutions for the property matrices of a rectangular element are precisely derived for solving chemical dissolution-front instability problems in fluid-saturated porous media. The proposed semi-analytical finite element method provides a useful way for understanding the underlying dynamic mechanisms of the washing land method involved in the contaminated land remediation.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3938
Author(s):  
Mohd Adib Tajuddin Ahmad ◽  
Norizah Abdul Rahman

In this study, polyacrylonitrile (PAN) was mixed with a renewable polymer, lignin, to produce electrospun nanofibers by using an electrospinning technique. Lignin was utilized as a soft template that was removed from the nanofibers by using a selective dissolution technique to create porous PAN nanofibers. These nanofibers were characterized with Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), thermogravimetry analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) to study their properties and morphology. The results showed that lignin can be homogeneously mixed into the PAN solution and successfully electrospun into nanofibers. FESEM results showed a strong relationship between the PAN: lignin ratio and the diameter of the electrospun fibers. Lignin was successfully removed from electrospun nanofibers by a selective chemical dissolution technique, which resulted in roughness and porousness on the surface of the nanofibers. Based on the BET result, the specific surface area of the PAN/lignin nanofibers was more than doubled following the removal of lignin compared to PAN nanofibers. The highest specific surface area of nanofibers after selective chemical dissolution was found at an 8:2 ratio of PAN/lignin, which was 32.42 m2g−1 with an average pore diameter of 5.02 nm. The diameter of electrospun nanofibers was also slightly reduced after selective chemical dissolution. Porous PAN nanofibers can be seen as the precursors to the production of highly porous carbon nanofibers.


2021 ◽  
Vol 116 (1) ◽  
pp. S1308-S1309
Author(s):  
Vinesh Kumar ◽  
Sanjay Kirshan Kumar ◽  
Kashif Razzaq ◽  
Ranjeet Kumar ◽  
Sindhusha Veeraballi ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 911
Author(s):  
Javier Martínez-Martínez ◽  
Anna Arizzi ◽  
David Benavente

This research focuses on the analysis of the influence of two secondary salt weathering processes on the durability of rocks exposed to marine environments: chemical dissolution of rock forming minerals and differential thermal expansion between halite and the hosting rock. These processes are scarcely treated in research compared to salt crystallisation. The methodology followed in this paper includes both in situ rock weathering monitoring and laboratory simulations. Four different calcite-bearing rocks (a marble, a microcrystalline limestone and two different calcarenites) were exposed during a year to a marine semiarid environment. Exposed samples show grain detachment, crystal edge corrosion, halite efflorescences and microfissuring. Crystal edge corrosion was also observed after the laboratory simulation during a brine immersion test. Calcite chemical dissolution causes a negligible porosity increase in all the studied rocks, but a significant modification of their pore size distribution. Laboratory simulations also demonstrate the deterioration of salt-saturated rocks during thermal cycles in climatic cabinet. Sharp differences between the linear thermal expansion of both a pure halite crystal and the different studied rocks justify the registered weight loss during the thermal cycles. The feedback between the chemical dissolution and differential thermal expansion, and the salt crystallisation of halite, contribute actively to the rock decay in marine environments.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Wuxiu Ding ◽  
Hongyi Wang ◽  
Huajun Chen ◽  
Tao Ma

To address the mechanical damages of limestone under the coupled mechanical(M)-hydrological(H)-chemical(C) effects, we performed uniaxial compression experiments and dissolution kinetics experiments on limestone in flowing and static solutions for different lengths of time. Through experiments, the peak strengths of the limestone under coupled MHC effects for different time lengths and the major ion concentrations in solutions were obtained. By analyzing the strength damage and chemical dissolution kinetic characteristics, we achieved the strength damage equations and chemical dissolution kinetic equations. Results show that when the solution shifted from the static state to the flowing state, and as its acidity increased, the peak strength loss of the limestone rose as well. The solution mobility had a more significant impact on the peak strength loss than the solution pH value. The limestone dissolution in flowing water was higher than in static water, indicating that solution mobility would promote the limestone dissolution. Among the contributing factors to limestone dissolution, the solution pH value showed the strongest impact, followed by the common-ion effect and then the salt effect. The research result is expected to provide a theoretical basis for maintaining the stability of rocks in geotechnical engineering practice and protection of stone cultural relics.


Sign in / Sign up

Export Citation Format

Share Document