In vitro activity of eravacycline and comparators against Acinetobacter baumannii, including carbapenem-resistant strains, and Stenotrophomonas maltophilia isolated from patients in Europe

Author(s):  
Patrick Scoble
2020 ◽  
Vol 75 (9) ◽  
pp. 2609-2615 ◽  
Author(s):  
Yawei Zhang ◽  
Chunjiang Zhao ◽  
Qi Wang ◽  
Xiaojuan Wang ◽  
Hongbin Chen ◽  
...  

Abstract Background SPR206 is a novel polymyxin analogue. Activity against clinical isolates is little documented. Methods A collection of 200 MDR, carbapenem-resistant, tigecycline-resistant, colistin-resistant and non-MDR clinical isolates of Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae and Stenotrophomonas maltophilia was obtained from 50 centres across China (2016–17). All isolates were derived from respiratory tract, urine and blood samples. Strains were purposely selected on the basis of phenotypes, genotypes and specimen origins. MICs of SPR206 and other antimicrobials were determined. Results SPR206 was active against all bacteria tested except colistin-resistant isolates. The MIC50/90 values of SPR206 for colistin-resistant strains were comparable to known polymyxins (16/128 versus 8/128 mg/L). SPR206 exhibited potent activity against colistin-susceptible OXA-producing A. baumannii (MIC50/90 = 0.064/0.125 mg/L), NDM-producing Enterobacteriaceae (MIC50/90 = 0.125/0.25 mg/L) and KPC-2-producing Enterobacteriaceae (MIC50/90 = 0.125/0.5 mg/L). In fact, SPR206 was the most potent agent tested, with 2- to 4-fold lower MICs than colistin and polymyxin B for A. baumannii, P. aeruginosa and Enterobacteriaceae. Additionally, MIC values of SPR206 (MIC50/90 = 0.064/0.125 mg/L) were 16- to 32-fold lower than those of tigecycline (MIC50/90 = 2/2 mg/L) for tigecycline-susceptible carbapenem-resistant A. baumannii. Conclusions SPR206 showed good in vitro activity against MDR, tigecycline-resistant and non-MDR clinical isolates of Gram-negative pathogens. SPR206 also exhibited superior potency to colistin and polymyxin B, with 2- to 4-fold lower MIC50/90 values.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S416-S417 ◽  
Author(s):  
Meredith Hackel ◽  
Dan Sahm

Abstract Background VNRX-5133 is a novel cyclic boronate-based broad-spectrum β-lactamase inhibitor with potent and selective direct inhibitory activity against both serine- and metallo-β-lactamases (Ambler Classes A, B, C, and D). In this analysis, we evaluated the activity of cefepime (FEP) in combination with VNRX-5133 and comparators against 1,120 recent Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Methods MICs of FEP with VNRX-5133 fixed at 4 µg/mL (FEP/VNRX-5133) were determined following CLSI M07-A10 guidelines against 1,120 Enterobacteriaceae from community and hospital infections collected globally in 2012–2013. Resistant phenotypes were based on 2017 CLSI breakpoints. As FEP/VNRX-5133 breakpoints have not yet been established, the FEP 2 g q8h susceptible dose-dependent (SDD) breakpoint of ≤8 µg/mL was considered for comparative purposes. Results FEP/VNRX-5133 showed potent in vitro activity against drug-resistant subsets of Enterobacteriaceae, with MIC90 values ranging from 1 µg/mL against ceftazidime-, levofloxacin-, or piperacillin–tazobactam-nonsusceptible isolates, to 8 µg/mL against meropenem-nonsusceptible isolates. FEP/VNRX-5133 inhibited >93% of all resistant subsets at ≤8 µg/mL. Conclusion Cefepime in combination with VNRX-5133 demonstrated potent in vitro activity against Enterobacteriaceae, including cephalosporin-, fluoroquinolone- and carbapenem-resistant (CRE) isolates. Because this drug combination exhibited substantial potential for the treatment of infections caused by isolates often resistant to first-line therapy, further development is warranted. Disclosures M. Hackel, IHMA, Inc.: Employee, Salary. VenatoRx: Consultant, Consulting fee. D. Sahm, IHMA, Inc.: Employee, Salary. VenatoRx: Consultant, Consulting fee.


2020 ◽  
Vol 75 (7) ◽  
pp. 1840-1849 ◽  
Author(s):  
Mercedes Delgado-Valverde ◽  
M del Carmen Conejo ◽  
Lara Serrano ◽  
Felipe Fernández-Cuenca ◽  
Álvaro Pascual

Abstract Background Cefiderocol is a novel siderophore cephalosporin, developed for activity against MDR Gram-negative bacilli (MDR-GNB). Objectives To assess the in vitro antibacterial activity of cefiderocol against a collection of MDR-GNB clinical isolates from hospitals in southern Spain. Methods Two hundred and thirty-one isolates of successful clones were tested: 125 Enterobacterales (121 ESBL- and/or carbapenemase-producing Klebsiella pneumoniae and 4 carbapenemase-producing Enterobacter cloacae), 80 Acinetobacter baumannii, 6 Pseudomonas aeruginosa and 20 Stenotrophomonas maltophilia. Ceftolozane/tazobactam, ceftazidime, ceftazidime/avibactam, cefepime, aztreonam, meropenem, amikacin, ciprofloxacin, colistin and tigecycline were used as comparators against Enterobacterales, P. aeruginosa and A. baumannii. Minocycline, levofloxacin and trimethoprim/sulfamethoxazole were studied against S. maltophilia instead of aztreonam, ciprofloxacin and cefepime. MICs were determined by broth microdilution according to CLSI guidelines. MIC determination was performed in CAMHB for all antimicrobials except cefiderocol, where iron-depleted CAMHB was used. Results Cefiderocol showed potent in vitro activity against the isolates analysed. MIC50 and MIC90 values were in the ranges 0.125–8 mg/L and 0.5–8 mg/L, respectively, and 98% of isolates were inhibited at ≤4 mg/L. Only five isolates showed cefiderocol MICs of >4 mg/L: three ST2/OXA-24/40-producing A. baumannii, one ST114/VIM-1-producing E. cloacae and one ST114/VIM-1 + OXA-48-producing E. cloacae. All KPC-3-producing K. pneumoniae were susceptible to cefiderocol, even those resistant to ceftazidime/avibactam. P. aeruginosa isolates showed cefiderocol MICs of <4 mg/L, including those resistant to ceftolozane/tazobactam. S. maltophilia isolates displayed cefiderocol MICs of <4 mg/L, including those resistant to levofloxacin and/or trimethoprim/sulfamethoxazole. Conclusions Cefiderocol showed excellent activity against MDR-GNB, including carbapenem-resistant isolates, and was the most active antimicrobial tested against this collection.


Sign in / Sign up

Export Citation Format

Share Document