Evaluation of the in vitro activity of new polymyxin B analogue SPR206 against clinical MDR, colistin-resistant and tigecycline-resistant Gram-negative bacilli

2020 ◽  
Vol 75 (9) ◽  
pp. 2609-2615 ◽  
Author(s):  
Yawei Zhang ◽  
Chunjiang Zhao ◽  
Qi Wang ◽  
Xiaojuan Wang ◽  
Hongbin Chen ◽  
...  

Abstract Background SPR206 is a novel polymyxin analogue. Activity against clinical isolates is little documented. Methods A collection of 200 MDR, carbapenem-resistant, tigecycline-resistant, colistin-resistant and non-MDR clinical isolates of Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae and Stenotrophomonas maltophilia was obtained from 50 centres across China (2016–17). All isolates were derived from respiratory tract, urine and blood samples. Strains were purposely selected on the basis of phenotypes, genotypes and specimen origins. MICs of SPR206 and other antimicrobials were determined. Results SPR206 was active against all bacteria tested except colistin-resistant isolates. The MIC50/90 values of SPR206 for colistin-resistant strains were comparable to known polymyxins (16/128 versus 8/128 mg/L). SPR206 exhibited potent activity against colistin-susceptible OXA-producing A. baumannii (MIC50/90 = 0.064/0.125 mg/L), NDM-producing Enterobacteriaceae (MIC50/90 = 0.125/0.25 mg/L) and KPC-2-producing Enterobacteriaceae (MIC50/90 = 0.125/0.5 mg/L). In fact, SPR206 was the most potent agent tested, with 2- to 4-fold lower MICs than colistin and polymyxin B for A. baumannii, P. aeruginosa and Enterobacteriaceae. Additionally, MIC values of SPR206 (MIC50/90 = 0.064/0.125 mg/L) were 16- to 32-fold lower than those of tigecycline (MIC50/90 = 2/2 mg/L) for tigecycline-susceptible carbapenem-resistant A. baumannii. Conclusions SPR206 showed good in vitro activity against MDR, tigecycline-resistant and non-MDR clinical isolates of Gram-negative pathogens. SPR206 also exhibited superior potency to colistin and polymyxin B, with 2- to 4-fold lower MIC50/90 values.

2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S375-S376 ◽  
Author(s):  
Masakatsu Tsuji ◽  
Meredith Hackel ◽  
Roger Echols ◽  
Yoshinori Yamano ◽  
Dan Sahm

Abstract Background The global rise of carbapenem resistant Gram-negative bacteria such as carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem-resistant non-fermenting bacteria is alarming and become threats to patient as only a few drugs remain active (e.g. colistin). Cefiderocol (S-649266) is a novel parenteral siderophore cephalosporin with potent activity against a wide variety of Gram-negative pathogens including carbapenem-resistant strains. This study evaluated the in vitro activity of cefiderocol and comparator agents against clinical isolates collected from urinary track source from North America. Methods A total of 3,323 Enterobacteriaceae, 263 Acinetobacter spp, 509 Pseudomonas aeruginosa, and 38 Stenotrophomonas maltophilia collected from the USA and Canada in 2014–2016 were tested. MIC was determined for cefiderocol, cefepime (FEP), ceftazidime-avibactam (CZA), ceftolozane-tazobactam (C/T), ciprofloxacin (CIP), colistin (CST), and meropenem (MEM) by broth microdilution and interpreted according to CLSI 2016 guidelines. All testing was done at IHMA, Inc. As recommended by CLSI, cefiderocol was tested in iron-depleted cation-adjusted Mueller Hinton broth. Based upon CLSI breakpoints, carbapenem-non-susceptible (CarbNS) strains were defined as follows: MEM: MIC ≥2 µg/mL for Enterobacteriaceae, ≥4 µg/mL for non-fermenters. Quality control testing was performed on each day of testing by using E. coli ATCC25922 and P. aeruginosa ATCC27853. Results Cefiderocol exhibited in vitro activity against 4,133 strains of Gram-negative bacteria with an overall MIC90 of 0.5 µg/mL. At 4 µg/mL cefiderocol inhibited the growth of 99.9% of the all isolates. MIC90 of cefiderocol against CarbNS Enterobacteriaceae was 4 µg/mL although MIC90 of other comparators were >64 or >8 (CST) µg/mL. The cefiderocol MIC90value was 1 µg/mL for CarbNS non-fermeneters. Conclusion Cefiderocol demonstrated potent in vitro activity against Enterobacteriaceae, A. baumannii, P. aeruginosa, and S. maltophilia isolates collected from a UTI source, with greater than 99.9% of isolates having MIC values ≤4 µg/mL. These findings indicate that this agent has high potential for treating cUTI infections caused by these problematic organisms, including isolates resistant to colistin. Disclosures M. Tsuji, Shionogi & Co.: Employee, Salary; M. Hackel, IHMA: Employee, Salary; R. Echols, Shionogi & CO., LTD: Consultant, Consulting fee; Y. Yamano, Shionogi & Co.: Employee, Salary


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S655-S655
Author(s):  
Daniel Navas ◽  
Angela Charles ◽  
Amy Carr ◽  
Jose Alexander

Abstract Background The activity of imipenem/relebactam (I/R), ceftazidime/avibactam (CZA) and cefiderocol (FDC) were evaluated against clinical isolates of multidrug resistant (MDR) strains of P. aeruginosa which was resistant to ceftolozane/tazobactam (C/T). The recent increase of MDR P. aeruginosa strains isolated from clinical samples has prompted research and development of new antimicrobials that can withstand its multiple resistance mechanisms. C/T is an effective option for treatment of MDR P. aeruginosa in our facility with only 10% of resistance in MDR strains, but the emergence of resistance may occur due to the presence of a carbapenemase gene or an ampC mutation. Methods Antimicrobial susceptibility testing for C/T Etest® (bioMérieux, Inc.) were performed on all MDR strains initially screened by the VITEK2® (bioMérieux, Inc.). 10% (n=20) of all MDR isolates were resistant to C/T by the CLSI 2019 breakpoints. These resistant isolates were tested for presence of a carbapenemase gene using the GeneXpert CARBA-R (Cepheid®) PCR and against CZA Etest® (bioMérieux, Inc.) I/R gradient strips (Liofilchem®) and FDC broth microdilution (Thermo Scientific™ Sensititre™). Results A total of 20 clinical isolates of MDR P. aeruginosa resistant to C/T were tested following standardized CLSI protocols and techniques. All 20 isolates were screened for the presence of a carbapenemase gene (blaVIM, blaNDM, blaKPC, blaOXA-48, blaIMP). A blaVIM gene was detected in 6 (30%) out of 20 isolates. FDC demonstrated the greatest activity with 85% (n=17) of susceptible isolates (CLSI MIC <4µg/dL). CZA (CLSI MIC <8µg/dL) and I/R (FDA MIC <2µg/dL) showed 15% (n=3) and 10% (n=2) of susceptible isolates respectively. FDC was active against all 6 blaVIM isolates, where all 6 strains were resistant to CZA and I/R as expected. 3 isolates tested non-susceptible against FDC; additional characterization was not performed at this time. Conclusion Based on these results, FDC demonstrated the greatest in-vitro activity against C/T resistant strains of MDR P. aeruginosa. FDC also demonstrated activity against all 6 MDR P. aeruginosa carrying blaVIM gene. FDC is a strong option to consider on MDR P. aeruginosa strains based on a resistance testing algorithm and a cost/effective protocol. Disclosures All Authors: No reported disclosures


Author(s):  
David W Wareham ◽  
M H F Abdul Momin ◽  
Lynette M Phee ◽  
Michael Hornsey ◽  
Joseph F Standing

Abstract Background β-Lactam (BL)/β-lactamase inhibitor (BLI) combinations are widely used for the treatment of Gram-negative infections. Cefepime has not been widely studied in combination with BLIs. Sulbactam, with dual BL/BLI activity, has been partnered with very few BLs. We investigated the potential of cefepime/sulbactam as an unorthodox BL/BLI combination against MDR Gram-negative bacteria. Methods In vitro activity of cefepime/sulbactam (1:1, 1:2 and 2:1) was assessed against 157 strains. Monte Carlo simulation was used to predict the PTA with a number of simulated cefepime combination regimens, modelled across putative cefepime/sulbactam breakpoints (≤16/≤0.25 mg/L). Results Cefepime/sulbactam was more active (MIC50/MIC90 8/8–64/128 mg/L) compared with either drug alone (MIC50/MIC90 128 to >256 mg/L). Activity was enhanced when sulbactam was added at 1:1 or 1:2 (P < 0.05). Reduction in MIC was most notable against Acinetobacter baumannii and Enterobacterales (MIC 8/8–32/64 mg/L). Pharmacokinetic/pharmacodynamic modelling highlighted that up to 48% of all isolates and 73% of carbapenem-resistant A. baumannii with a cefepime/sulbactam MIC of ≤16/≤8 mg/L may be treatable with a high-dose, fixed-ratio (1:1 or 1:2) combination of cefepime/sulbactam. Conclusions Cefepime/sulbactam (1:1 or 1:2) displays enhanced in vitro activity versus MDR Gram-negative pathogens. It could be a potential alternative to existing BL/BLI combinations for isolates with a cefepime/sulbactam MIC of 16/8 mg/L either as a definitive treatment or as a carbapenem-sparing option.


2004 ◽  
Vol 48 (1) ◽  
pp. 73-75 ◽  
Author(s):  
Nicolas C. Issa ◽  
Mark S. Rouse ◽  
Kerryl E. Piper ◽  
Walter R. Wilson ◽  
James M. Steckelberg ◽  
...  

2010 ◽  
Vol 25 (1) ◽  
Author(s):  
Elisabetta Maioli ◽  
Erika Coppo ◽  
Ramona Barbieri ◽  
Elisabetta Canepa ◽  
Laura Gualco ◽  
...  

2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S416-S417 ◽  
Author(s):  
Meredith Hackel ◽  
Dan Sahm

Abstract Background VNRX-5133 is a novel cyclic boronate-based broad-spectrum β-lactamase inhibitor with potent and selective direct inhibitory activity against both serine- and metallo-β-lactamases (Ambler Classes A, B, C, and D). In this analysis, we evaluated the activity of cefepime (FEP) in combination with VNRX-5133 and comparators against 1,120 recent Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Methods MICs of FEP with VNRX-5133 fixed at 4 µg/mL (FEP/VNRX-5133) were determined following CLSI M07-A10 guidelines against 1,120 Enterobacteriaceae from community and hospital infections collected globally in 2012–2013. Resistant phenotypes were based on 2017 CLSI breakpoints. As FEP/VNRX-5133 breakpoints have not yet been established, the FEP 2 g q8h susceptible dose-dependent (SDD) breakpoint of ≤8 µg/mL was considered for comparative purposes. Results FEP/VNRX-5133 showed potent in vitro activity against drug-resistant subsets of Enterobacteriaceae, with MIC90 values ranging from 1 µg/mL against ceftazidime-, levofloxacin-, or piperacillin–tazobactam-nonsusceptible isolates, to 8 µg/mL against meropenem-nonsusceptible isolates. FEP/VNRX-5133 inhibited &gt;93% of all resistant subsets at ≤8 µg/mL. Conclusion Cefepime in combination with VNRX-5133 demonstrated potent in vitro activity against Enterobacteriaceae, including cephalosporin-, fluoroquinolone- and carbapenem-resistant (CRE) isolates. Because this drug combination exhibited substantial potential for the treatment of infections caused by isolates often resistant to first-line therapy, further development is warranted. Disclosures M. Hackel, IHMA, Inc.: Employee, Salary. VenatoRx: Consultant, Consulting fee. D. Sahm, IHMA, Inc.: Employee, Salary. VenatoRx: Consultant, Consulting fee.


Sign in / Sign up

Export Citation Format

Share Document