Detection of anti MOG antibodies in Demyelinating disorders of the central nervous system (CNS)

Author(s):  
Arianna Sala
Author(s):  
Siddharthan Chandran ◽  
Alastair Compston

Clinicians suspect demyelination when episodes reflecting damage to white matter tracts within the central nervous system occur in young adults. The paucity of specific biological markers of discrete demyelinating syndromes places an emphasis on clinical phenotype—temporal and spatial patterns—when classifying demyelinating disorders. The diagnosis of multiple sclerosis, the most common demyelinating disorder, becomes probable when these symptoms and signs recur, involving different parts of the brain and spinal cord. Other important demyelinating diseases include post-infectious neurological disorders (acute disseminated encephalomyelitis), demyelination resulting from metabolic derangements (central pontine myelinosis), and inherited leucodystrophies that may present in children or in adults. Accepting differences in mechanism, presentation, and treatment, two observations can usefully be made when classifying demyelinating disorders. These are the presence or absence of inflammation, and the extent of focal vs. diffuse demyelination. Multiple sclerosis is prototypic for the former, whereas dysmyelinating disorders, such as leucodystrophies are representative of the latter....


2020 ◽  
Vol 17 (3) ◽  
pp. 1142-1152 ◽  
Author(s):  
Karl E. Carlström ◽  
Praveen K. Chinthakindi ◽  
Belén Espinosa ◽  
Faiez Al Nimer ◽  
Elias S. J. Arnér ◽  
...  

Abstract The Nrf2 transcription factor is a key regulator of redox reactions and considered the main target for the multiple sclerosis (MS) drug dimethyl fumarate (DMF). However, exploration of additional Nrf2-activating compounds is motivated, since DMF displays significant off-target effects and has a relatively poor penetrance to the central nervous system (CNS). We de novo synthesized eight vinyl sulfone and sulfoximine compounds (CH-1–CH-8) and evaluated their capacity to activate the transcription factors Nrf2, NFκB, and HIF1 in comparison with DMF using the pTRAF platform. The novel sulfoximine CH-3 was the most promising candidate and selected for further comparison in vivo and later an experimental model for traumatic brain injury (TBI). CH-3 and DMF displayed comparable capacity to activate Nrf2 and downstream transcripts in vitro, but with less off-target effects on HIF1 from CH-3. This was verified in cultured microglia and oligodendrocytes (OLs) and subsequently in vivo in rats. Following TBI, DMF lowered the number of leukocytes in blood and also decreased axonal degeneration. CH-3 preserved or increased the number of pre-myelinating OL. While both CH-3 and DMF activated Nrf2, CH-3 showed less off-target effects and displayed more selective OL associated effects. Further studies with Nrf2-acting compounds are promising candidates to explore potential myelin protective or regenerative effects in demyelinating disorders.


2011 ◽  
Vol 22 (5) ◽  
pp. 223-237 ◽  
Author(s):  
Antonio José da Rocha ◽  
Bernardo Rodi Carvalho Barros ◽  
Bruno Vasconcelos Sobreira Guedes ◽  
Antonio Carlos Martins Maia

2017 ◽  
Vol 5 (1) ◽  
pp. 74-78
Author(s):  
V. Tsymbaliuk ◽  
V. Semenova ◽  
L. Pichkur ◽  
O. Velychko ◽  
D. Egorova

The review summarizes the current concepts of cell-tissue and molecular features of development of demyelinating processes in the central nervous system related to multiple sclerosis and its animal model – allergic encephalomyelitis. An analysis of recently published studies of this pathology, carried out with light and electron microscopy and immunohistochemical and molecular genetic methods, is given. New methodological approaches to the study of the pathomorhological aspects of demyelinating disorders allowed receiving in-depth understanding of the etiology and mechanisms of demyelination processes in the brain and spinal cord tissues at the cellular level and identifying the ways to develop effective modern methods of pathogenetic treatment of these diseases using cell therapy.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1339
Author(s):  
Hye Lim Lee ◽  
Jin-Woo Park ◽  
Jin Myoung Seok ◽  
Mi Young Jeon ◽  
Hojin Kim ◽  
...  

Previous efforts to discover new surrogate markers for the central nervous system (CNS) inflammatory demyelinating disorders have shown inconsistent results; moreover, supporting evidence is scarce. The present study investigated the IgG autoantibody responses to various viral and autoantibodies-related peptides proposed to be related to CNS inflammatory demyelinating disorders using the peptide microarray method. We customized a peptide microarray containing more than 2440 immobilized peptides representing human and viral autoantigens. Using this, we tested the sera of patients with neuromyelitis optica spectrum disorders (NMOSD seropositive, n = 6; NMOSD seronegative, n = 5), multiple sclerosis (MS, n = 5), and myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD, n = 6), as well as healthy controls (HC, n = 5) and compared various peptide immunoglobulin G (IgG) responses between the groups. Among the statistically significant peptides based on the pairwise comparisons of IgG responses in each disease group to HC, cytomegalovirus (CMV)-related peptides were most clearly distinguishable among the study groups. In particular, the most significant differences in IgG response were observed for HC vs. MS and HC vs. seronegative NMOSD (p = 0.064). Relatively higher IgG responses to CMV-related peptides were observed in patients with MS and NMOSD based on analysis of the customized peptide microarray.


Sign in / Sign up

Export Citation Format

Share Document