The impact of copy number variants on brain anatomy

Author(s):  
Claudia Modenato
2019 ◽  
Vol 29 ◽  
pp. S441-S442
Author(s):  
C. Modenato ◽  
A. Pain ◽  
S. Martin-Brevet ◽  
A. Maillard ◽  
B. Rodriguez-Herreros ◽  
...  

2020 ◽  
pp. 1-8
Author(s):  
Xavier Caseras ◽  
George Kirov ◽  
Kimberley M. Kendall ◽  
Elliott Rees ◽  
Sophie E. Legge ◽  
...  

Background Schizophrenia is a highly heritable disorder with undetermined neurobiological causes. Understanding the impact on brain anatomy of carrying genetic risk for the disorder will contribute to uncovering its neurobiological underpinnings. Aims To examine the effect of rare copy number variants (CNVs) associated with schizophrenia on brain cortical anatomy in a sample of unaffected participants from the UK Biobank. Method We used regression analyses to compare cortical thickness and surface area (total and across gyri) between 120 unaffected carriers of rare CNVs associated with schizophrenia and 16 670 participants without any pathogenic CNV. A measure of cortical thickness and surface area covariance across gyri was also compared between groups. Results Carrier status was associated with reduced surface area (β = −0.020 mm2, P < 0.001) and less robustly with increased cortical thickness (β = 0.015 mm, P = 0.035), and with increased covariance in thickness (carriers z = 0.31 v. non-carriers z = 0.22, P < 0.0005). Associations were mainly present in frontal and parietal areas and driven by a limited number of rare risk alleles included in our analyses (mainly 15q11.2 deletion for surface area and 16p13.11 duplication for thickness covariance). Conclusions Results for surface area conformed with previous clinical findings, supporting surface area reductions as an indicator of genetic liability for schizophrenia. Results for cortical thickness, though, argued against its validity as a potential risk marker. Increased structural thickness covariance across gyri also appears related to risk for schizophrenia. The heterogeneity found across the effects of rare risk alleles suggests potential different neurobiological gateways into schizophrenia's phenotype.


Author(s):  
Elmo Christian Saarentaus ◽  
Aki Samuli Havulinna ◽  
Nina Mars ◽  
Ari Ahola-Olli ◽  
Tuomo Tapio Johannes Kiiskinen ◽  
...  

AbstractCopy number variants (CNVs) are associated with syndromic and severe neurological and psychiatric disorders (SNPDs), such as intellectual disability, epilepsy, schizophrenia, and bipolar disorder. Although considered high-impact, CNVs are also observed in the general population. This presents a diagnostic challenge in evaluating their clinical significance. To estimate the phenotypic differences between CNV carriers and non-carriers regarding general health and well-being, we compared the impact of SNPD-associated CNVs on health, cognition, and socioeconomic phenotypes to the impact of three genome-wide polygenic risk score (PRS) in two Finnish cohorts (FINRISK, n = 23,053 and NFBC1966, n = 4895). The focus was on CNV carriers and PRS extremes who do not have an SNPD diagnosis. We identified high-risk CNVs (DECIPHER CNVs, risk gene deletions, or large [>1 Mb] CNVs) in 744 study participants (2.66%), 36 (4.8%) of whom had a diagnosed SNPD. In the remaining 708 unaffected carriers, we observed lower educational attainment (EA; OR = 0.77 [95% CI 0.66–0.89]) and lower household income (OR = 0.77 [0.66–0.89]). Income-associated CNVs also lowered household income (OR = 0.50 [0.38–0.66]), and CNVs with medical consequences lowered subjective health (OR = 0.48 [0.32–0.72]). The impact of PRSs was broader. At the lowest extreme of PRS for EA, we observed lower EA (OR = 0.31 [0.26–0.37]), lower-income (OR = 0.66 [0.57–0.77]), lower subjective health (OR = 0.72 [0.61–0.83]), and increased mortality (Cox’s HR = 1.55 [1.21–1.98]). PRS for intelligence had a similar impact, whereas PRS for schizophrenia did not affect these traits. We conclude that the majority of working-age individuals carrying high-risk CNVs without SNPD diagnosis have a modest impact on morbidity and mortality, as well as the limited impact on income and educational attainment, compared to individuals at the extreme end of common genetic variation. Our findings highlight that the contribution of traditional high-risk variants such as CNVs should be analyzed in a broader genetic context, rather than evaluated in isolation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudia Modenato ◽  
Kuldeep Kumar ◽  
Clara Moreau ◽  
Sandra Martin-Brevet ◽  
Guillaume Huguet ◽  
...  

AbstractMany copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions.


2012 ◽  
Vol 18 (2) ◽  
pp. 60-62
Author(s):  
MC Gonsales ◽  
P Preto ◽  
MA Montenegro ◽  
MM Guerreiro ◽  
I Lopes-Cendes

OBJECTIVES: The purpose of this study was to advance the knowledge on the clinical use of SCN1A testing for severe epilepsies within the spectrum of generalized epilepsy with febrile seizures plus by performing genetic screening in patients with Dravet and Doose syndromes and establishing genotype-phenotype correlations. METHODS: Mutation screening in SCN1A was performed in 15 patients with Dravet syndrome and 13 with Doose syndrome. Eight prediction algorithms were used to analyze the impact of the mutations in putative protein function. Furthermore, all SCN1A mutations previously published were compiled and analyzed. In addition, Multiplex Ligation-Dependent Probe Amplification (MLPA) technique was used to detect possible copy number variations within SCN1A. RESULTS: Twelve mutations were identified in patients with Dravet syndrome, while patients with Doose syndrome showed no mutations. Our results show that the most common type of mutation found is missense, and that they are mostly located in the pore region and the N- and C-terminal of the protein. No copy number variants in SCN1A were identified in our cohort. CONCLUSIONS: SCN1A testing is clinically useful for patients with Dravet syndrome, but not for those with Doose syndrome, since both syndromes do not seem to share the same genetic basis. Our results indicate that indeed missense mutations can cause severe phenotypes depending on its location and the type of amino-acid substitution. Moreover, our strategy for predicting deleterious effect of mutations using multiple computation algorithms was efficient for most of the mutations identified.


2020 ◽  
Author(s):  
Claudia Modenato ◽  
Kuldeep Kumar ◽  
Clara Moreau ◽  
Sandra Martin-Brevet ◽  
Guillaume Huguet ◽  
...  

AbstractBackgroundCopy Number Variants (CNVs) associated with autism and schizophrenia have large effects on brain anatomy. Yet, neuroimaging studies have been conducted one mutation at a time. We hypothesize that neuropsychiatric CNVs may exert general effects on brain morphometry because they confer risk for overlapping psychiatric conditions.MethodsWe analyzed T1-weighted MRIs and characterized shared patterns on brain anatomy across 8 neuropsychiatric CNVs. Clinically ascertained samples included 1q21.1 (n=48), 16p11.2 (n=156), or 22q11.2 (n=96) and 331 non-carriers. Non-clinically ascertained samples from the UK Biobank included 1q21.1 (n=19), 16p11.2 (n=8), 22q11.2 (n=9), 15q11.2 (n=148) and 965 non-carriers. Canonical correlation analysis (CCA) and univariate models were used to interrogate brain morphometry changes across 8 CNVs.ResultsEight CNVs affect regional brain volumes along two main gene-morphometry dimensions identified by CCA. While fronto-temporal regions contributed to dimension 1, dimension 2 was driven by subcortical, parietal and occipital regions. Consistently, voxel-wise whole-brain analyses identified the same regions involved in patterns of alteration present across the 4 deletions and duplications. These neuroanatomical patterns are similar to those observed in cross-psychiatric disorder meta-analyses. Deletions and duplications at all 4 loci show mirror effects at either the global and/or the regional level.ConclusionNeuropsychiatric CNVs share neuroanatomical signatures characterized by a parsimonious set of brain dimensions. The latter may underlie the risk conferred by CNVs for a similar spectrum of neuropsychiatric conditions.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 524 ◽  
Author(s):  
Teresa Giugliano ◽  
Marco Savarese ◽  
Arcomaria Garofalo ◽  
Esther Picillo ◽  
Chiara Fiorillo ◽  
...  

Next-generation sequencing (NGS) technologies have led to an increase in the diagnosis of heterogeneous genetic conditions. However, over 50% of patients with a genetically inherited disease are still without a diagnosis. In these cases, different hypotheses are usually postulated, including variants in novel genes or elusive mutations. Although the impact of copy number variants (CNVs) in neuromuscular disorders has been largely ignored to date, missed CNVs are predicted to have a major role in disease causation as some very large genes, such as the dystrophin gene, have prone-to-deletion regions. Since muscle tissues express several large disease genes, the presence of elusive CNVs needs to be comprehensively assessed following an accurate and systematic approach. In this multicenter cohort study, we analyzed 234 undiagnosed myopathy patients using a custom array comparative genomic hybridization (CGH) that covers all muscle disease genes at high resolution. Twenty-two patients (9.4%) showed non-polymorphic CNVs. In 12 patients (5.1%), the identified CNVs were considered responsible for the observed phenotype. An additional ten patients (4.3%) presented candidate CNVs not yet proven to be causative. Our study indicates that deletions and duplications may account for 5–9% of genetically unsolved patients. This strongly suggests that other mechanisms of disease are yet to be discovered.


2019 ◽  
Vol 29 ◽  
pp. S196-S197
Author(s):  
Claudia Modenato ◽  
Kuldeep Kumar ◽  
Clara Moreau ◽  
Eloi Gagnon ◽  
Catherine Schramm ◽  
...  

2018 ◽  
Vol 28 ◽  
pp. S75-S76
Author(s):  
C. Modenato ◽  
A. Pain ◽  
S. Martin-Brevet ◽  
A. Maillard ◽  
B. Rodriguez-Herreros ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document