main gene
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 24)

H-INDEX

8
(FIVE YEARS 3)

2021 ◽  
Vol 12 (6) ◽  
pp. 737-744
Author(s):  
Amrita Kumari ◽  
◽  
B. K. Senapati ◽  
Anita Roy Aich ◽  
Aditya Pratap Singh ◽  
...  

The present investigation was conducted to understand the genetic action for controlling the inheritance of some quantitative characters. The experimental materials consisted of three rice varieties, i.e., Mahsuri, Bhutmuri, IR36 and F1, F2, and F3 populations of Mahsuri×Bhutmuri (Cross I) and IR36×Bhutmuri (Cross II). To conduct the generation mean analysis, the parents and their F1, F2, and F3 populations were evaluated during June to October month of Kharif 2016 and Kharif 2017. Generation mean analysis was done for eighteen quantitative characters following the five parameter model. The Analysis of Variance revealed significant differences among the five generations for all the characters studied. The results of the scaling tests and joint scaling test revealed that the Simple additive-dominance model was inadequate for days to 50% flowering, days to maturity, number of panicles plant-1, number of primary branches panicle-1, number of secondary branches panicle-1 in Cross I, while it was for plant height, number of tillers plant-1, number of panicles plant-1, number of grains panicle-1, number of filled grains panicle–1 and fertility % in Cross II. Hence, the present studies have revealed that epistasis as a basic mechanism that cannot be ignored. Thus, formulating breeding policies on only main gene effects i.e. additive and dominance could be misleading.


BioChem ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-7
Author(s):  
Shivani Manikandan ◽  
Suchir Misra ◽  
Serena McCalla

Bipolar Disorder (BD), a chronic mental illness, does not have an ideal treatment, and patients with BD have a higher chance of being diagnosed with alcohol abuse, liver disease, and diabetes. The goal of treatment is to prevent a relapse in BD episodes and find a new treatment. The research here looks at the genetics of BD and ignores environmental factors, as they are subjective. Therapy treats known environmental triggers and stressors and explores methods to reduce them. However, therapy alone cannot fully alleviate the symptoms of BD. My research employs text-mining as a primary strategy to obtain relevant genes and drugs pertaining to BD. The main gene involved is the Brain-Derived Neurotrophic Factor (BDNF). Popular drugs currently used for treatment of BD are Lithium and Carbamazepine. Using CMapPy to look at gene expression data, one sees a relationship between the two drug therapies and BDNF. Lithium fails to treat mania and Carbamazepine fails to treat depression, relatively speaking. When comparing gene expression data of Lithium and Carbamazepine with Ketamine, a newer therapy for BD, Ketamine, raises the BDNF level, keeps it elevated, and effectively controls BD episodes. Ketamine does not have the shortcomings that Lithium and Carbamazepine have. Next steps would include conducting a clinical trial with the hopeful application of Ketamine as a new treatment for BD.


2021 ◽  
Author(s):  
Maxime Policarpo ◽  
Katherine E Bemis ◽  
Patrick Laurenti ◽  
Laurent Legendre ◽  
Jean-Christophe Sandoz ◽  
...  

Ray-finned fishes (Actinopterygii) perceive their environment through a range of sensory modalities, including olfaction 1,2. Anatomical diversity of the olfactory organ suggests that olfaction is differentially important among species 1,3,4. To explore this topic, we studied the evolutionary dynamics of the four main gene families (OR, TAAR, ORA/VR1 and OlfC/VR2) 5 coding for olfactory receptors in 185 species of ray-finned fishes. The large variation in the number of functional genes, between 28 in the Ocean Sunfish Mola mola and 1317 in the Reedfish Erpetoichthys calabaricus, is the result of parallel expansions and contractions of the four main gene families. Several ancient and independent simplifications of the olfactory organ are associated with massive gene losses. In contrast, polypteriforms, which have a unique and complex olfactory organ, have almost twice as many olfactory receptor genes as any other ray-finned fish. These observations suggest a functional link between morphology of the olfactory organ and richness of the olfactory receptor repertoire. Further, our results demonstrate that the genomic underpinning of olfaction in ray-finned fishes is heterogeneous and presents a dynamic pattern of evolutionary expansions, simplifications and reacquisitions.


Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 70
Author(s):  
Subham Mukherjee ◽  
Oldřich Bartoš ◽  
Kamila Zdeňková ◽  
Petr Hanák ◽  
Petra Horká ◽  
...  

Parvalbumin is considered a major fish allergen. Here, we report the molecular evolution of the parvalbumin genes in bony fishes based on 19 whole genomes and 70 transcriptomes. We found unexpectedly high parvalbumin diversity in teleosts; three main gene types (pvalb-α, pvalb-β1, and pvalb-β2, including oncomodulins) originated at the onset of vertebrates. Teleosts have further multiplied the parvalbumin gene repertoire up to nine ancestral copies—two copies of pvalb-α, two copies of pvalb-β1, and five copies of pvalb-β2. This gene diversity is a result of teleost-specific whole-genome duplication. Two conserved parvalbumin genomic clusters carry pvalb-β1 and β2 copies, whereas pvalb-α genes are located separately in different linkage groups. Further, we investigated parvalbumin gene expression in 17 tissues of the common carp (Cyprinus carpio), a species with 21 parvalbumin genes in its genome. Two pvalb-α and eight pvalb-β2 copies are highly expressed in the muscle, while two alternative pvalb-α copies show expression in the brain and the testes, and pvalb-β1 is dominant in the retina and the kidney. The recent pairs of muscular pvalb-β2 genes show differential expression in this species. We provide robust genomic evidence of the complex evolution of the parvalbumin genes in fishes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Valentina Taverniti ◽  
Valentina Cesari ◽  
Giorgio Gargari ◽  
Umberto Rossi ◽  
Cristina Biddau ◽  
...  

Probiotic microorganisms may benefit the host by influencing diverse physiological processes, whose nature and underlying mechanisms are still largely unexplored. Animal models are a unique tool to understand the complexity of the interactions between probiotic microorganisms, the intestinal microbiota, and the host. In this regard, in this pilot study, we compared the effects of 5-day administration of three different probiotic bacterial strains (Bifidobacterium bifidum MIMBb23sg, Lactobacillus helveticus MIMLh5, and Lacticaseibacillus paracasei DG) on three distinct murine intestinal sites (ileum, cecum, and colon). All probiotics preferentially colonized the cecum and colon. In addition, probiotics reduced in the ileum and increased in the cecum and colon the relative abundance of numerous bacterial taxonomic units. MIMBb23sg and DG increased the inducible nitric oxide synthase (iNOS) in the ileum, which is involved in epithelial homeostasis. In addition, MIMBb23sg upregulated cytokine IL-10 in the ileum and downregulated the cyclooxygenase COX-2 in the colon, suggesting an anti-inflammatory/regulatory activity. MIMBb23sg significantly affected the expression of the main gene involved in serotonin synthesis (TPH1) and the gene coding for the serotonin reuptake protein (SERT) in the ileum and colon, suggesting a potential propulsive effect toward the distal part of the gut, whereas the impact of MIMLh5 and DG on serotonergic genes suggested an effect toward motility control. The three probiotics decreased the expression of the permeability marker zonulin in gut distal sites. This preliminary in vivo study demonstrated the safety of the tested probiotic strains and their common ability to modulate the intestinal microbiota. The probiotics affected host gene expression in a strain-specific manner. Notably, the observed effects in the gut were site dependent. This study provides a rationale for investigating the effects of probiotics on the serotonergic system, which is a topic still widely unexplored.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1656
Author(s):  
Alireza Pour-Aboughadareh ◽  
Farzad Kianersi ◽  
Peter Poczai ◽  
Hoda Moradkhani

Among cereal crops, wheat has been identified as a major source for human food consumption. Wheat breeders require access to new genetic diversity resources to satisfy the demands of a growing human population for more food with a high quality that can be produced in variable environmental conditions. The close relatives of domesticated wheats represent an ideal gene pool for the use of breeders. The genera Aegilops and Triticum are known as the main gene pool of domesticated wheat, including numerous species with different and interesting genomic constitutions. According to the literature, each wild relative harbors useful alleles which can induce resistance to various environmental stresses. Furthermore, progress in genetic and biotechnology sciences has provided accurate information regarding the phylogenetic relationships among species, which consequently opened avenues to reconsider the potential of each wild relative and to provide a context for how we can employ them in future breeding programs. In the present review, we have sought to represent the level of genetic diversity among the wild relatives of wheat, as well as the breeding potential of each wild species that can be used in wheat-breeding programs.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1423
Author(s):  
André Albuquerque ◽  
Cristina Óvilo ◽  
Yolanda Núñez ◽  
Rita Benítez ◽  
Adrián López-Garcia ◽  
...  

Gene expression is one of the main factors to influence meat quality by modulating fatty acid metabolism, composition, and deposition rates in muscle tissue. This study aimed to explore the transcriptomics of the Longissimus lumborum muscle in two local pig breeds with distinct genetic background using next-generation sequencing technology and Real-Time qPCR. RNA-seq yielded 49 differentially expressed genes between breeds, 34 overexpressed in the Alentejano (AL) and 15 in the Bísaro (BI) breed. Specific slow type myosin heavy chain components were associated with AL (MYH7) and BI (MYH3) pigs, while an overexpression of MAP3K14 in AL may be associated with their lower loin proportion, induced insulin resistance, and increased inflammatory response via NFkB activation. Overexpression of RUFY1 in AL pigs may explain the higher intramuscular (IMF) content via higher GLUT4 recruitment and consequently higher glucose uptake that can be stored as fat. Several candidate genes for lipid metabolism, excluded in the RNA-seq analysis due to low counts, such as ACLY, ADIPOQ, ELOVL6, LEP and ME1 were identified by qPCR as main gene factors defining the processes that influence meat composition and quality. These results agree with the fatter profile of the AL pig breed and adiponectin resistance can be postulated as responsible for the overexpression of MAP3K14′s coding product NIK, failing to restore insulin sensitivity.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2172
Author(s):  
Antonio Passaro ◽  
Ilaria Attili ◽  
Alessandra Rappa ◽  
Davide Vacirca ◽  
Alberto Ranghiero ◽  
...  

An increasing number of driver genomic alterations with potential targeted treatments have been identified in non-small cell lung cancer (NSCLC). Much less is known about the incidence and different distribution of concurrent alterations, as identified by comprehensive genomic profiling in oncogene-addicted NSCLCs. Genomic data from advanced NSCLC consecutively analyzed using a broad next-generation sequencing panel were retrospectively collected. Tumors harboring at least one main actionable gene alteration were categorized according to the presence/absence of concurrent genomic aberrations, to evaluate different patterns among the main oncogene-addicted NSCLCs. Three-hundred-nine actionable gene alterations were identified in 284 advanced NSCLC patients during the study period. Twenty-five tumor samples (8%) displayed concurrent alterations in actionable genes. Co-occurrences involving any pathogenic variant or copy number variation (CNV) were identified in 82.8% of cases. Overall, statistically significant differences in the number of concurrent alterations, and the distribution of TP53, STK11, cyclines and receptor tyrosin kinase (RTK) aberrations were observed across the eight actionable gene groups. NGS analyses of oncogene-addicted NSCLCs showed a different distribution and pattern of co-alteration profiles. Further investigations are needed to evaluate the prognostic and treatment-related impact of these concurrent alterations, hooked to the main gene aberrations.


OENO One ◽  
2021 ◽  
Vol 55 (1) ◽  
pp. 183-206
Author(s):  
Manna Crespan ◽  
Daniele Migliaro ◽  
Silvia Vezzulli ◽  
Sara Zenoni ◽  
Giovanni Battista Tornielli ◽  
...  

Berry texture and berry skin mechanical properties are traits with high agronomic relevance because they are related to quality parameters and marketing requirements of wine, table, and raisin grapes. Searching for QTLs linked to berry texture, an F1 population of 152 individuals and their parents were used in this study. These F1 plants were obtained crossing Raboso Veronese, a seeded black wine grape cultivar, and Sultanina, a seedless white grape variety, especially used for raisins. Density flotation was applied for berry sorting improving the management of many and highly variable genotypes, irrespective of the quantification of specific molecule classes. Berries were evaluated for technological ripeness parameters and mechanical properties. Texture parameters were taken as raw data and as data normalised on berry dimensions, i.e., berry diameter or surface or volume. SSR molecular markers were used to produce a genetic map and a major QTL for berry texture was found on chromosome 18 with traits related to berry firmness showing a phenotypical explained variance higher than 60 %, and traits related to berry resilience, springiness and cohesiveness showing a variance higher than 50 %. Surprisingly, this QTL showed to be associated with SSR markers linked to VviAGL11, the main gene linked to seedlessness. VviAGL11 expression and co-expression profiling during grape ripening was evaluated using available information; this data suggested a role for this gene on the texture of a ripe berry.List of Abbreviations:ABW, average berry weightBR, berry resilienceBR_diam, berry resilience normalised on berry diameterBR_sur, berry resilience normalised on berry surfaceBR_vol, berry resilience normalised on berry volumeBS_ratio, berry springinessBS_ratio_diam, berry springiness normalised on berry diameterBS_ratio_sur, berry springiness normalised on berry surfaceBS_ratio_vol, berry springiness normalised on berry volumeBCo, berry cohesivenessBCo_diam, berry cohesiveness normalised on berry diameterBCo_sur, berry cohesiveness normalised on berry surfaceBCo_vol, berry cohesiveness normalised on berry volumeBH, berry hardnessBH_diam, berry hardness normalised on berry diameterBH_sur, berry hardness normalised on berry surfaceBH_vol, berry hardness normalised on berry volumeBG, berry gumminessBG_diam, berry gumminess normalised on berry diameterBG_sur, berry gumminess normalised on berry surfaceBG_vol, berry gumminess normalised on berry volumeBCh_ratio, berry chewinessBCh_ratio_diam, berry chewiness normalised on berry diameterBCh_ratio_sur, berry chewiness normalised on berry surfaceBCh_ratio_vol, berry chewiness normalised on berry volumeFsk, berry skin break forceWsk, berry skin break energyEsk, berry skin resistance to the axial deformationSpsk, berry skin thickness


2021 ◽  
Vol 12 ◽  
Author(s):  
Lucas G. Castellani ◽  
Abril Luchetti ◽  
Juliet F. Nilsson ◽  
Julieta Pérez-Giménez ◽  
Caren Wegener ◽  
...  

One of the greatest inputs of available nitrogen into the biosphere occurs through the biological N2-fixation to ammonium as result of the symbiosis between rhizobia and leguminous plants. These interactions allow increased crop yields on nitrogen-poor soils. Exopolysaccharides (EPS) are key components for the establishment of an effective symbiosis between alfalfa and Ensifer meliloti, as bacteria that lack EPS are unable to infect the host plants. Rhizobium favelukesii LPU83 is an acid-tolerant rhizobia strain capable of nodulating alfalfa but inefficient to fix nitrogen. Aiming to identify the molecular determinants that allow R. favelukesii to infect plants, we studied its EPS biosynthesis. LPU83 produces an EPS I identical to the one present in E. meliloti, but the organization of the genes involved in its synthesis is different. The main gene cluster needed for the synthesis of EPS I in E. meliloti, is split into three different sections in R. favelukesii, which probably arose by a recent event of horizontal gene transfer. A R. favelukesii strain devoided of all the genes needed for the synthesis of EPS I is still able to infect and nodulate alfalfa, suggesting that attention should be directed to other molecules involved in the development of the symbiosis.


Sign in / Sign up

Export Citation Format

Share Document