Selection of Ankle-Foot Orthosis Shank to Vertical Angle in Adults with Neurological Conditions: A Literature Review

Author(s):  
Joshua Young ◽  
Joshua Young
1996 ◽  
Vol 20 (2) ◽  
pp. 132-137 ◽  
Author(s):  
T. Sumiya ◽  
Y. Suzuki ◽  
T. Kasahara

The hingeless plastic ankle-foot orthosis (AFO) changes stiffness largely depending on how much plastic is trimmed around the ankle. To support proper selection of the orthosis and final adjustment of the orthotic stiffness, the correlation between the posterior upright width and the resistance to dorsi- and plantar flexion movements was measured in 30 posterior-type plastic AFOs. The posterior upright width was varied by regularly trimming around the ankle in nine stages. The resistance to dorsi- and plantar flexion movements was measured by bending the plastic AFOs 15d` with the measuring device described in Part 1. All the plastic AFOs decreased in their resistance to both movements in proportion to the reduction of the posterior upright width. The maximum resistance to plantar flexion movement was about 28 Nm, which was strong enough to assist dorsiflexion in patients with severe spasticity. On the other hand, the maximum resistance to dorsiflexion movement measured was about 10 Nm, which was insufficient to stabilise the ankle in patients who lacked in plantar flexion strength. These findings suggested that this type of plastic AFO should be prescribed for patients who predominantly require dorsiflexion assist, and that the orthotic stiffness could be finally adjusted by trimming to exactly meet individual requirements.


2021 ◽  
Author(s):  
Sumiko Yamamoto ◽  
Naoyuki Motojima ◽  
Yosuke Kobayashi ◽  
Yuji Osada ◽  
Souji Tanaka ◽  
...  

Abstract BackgroundGait improvement in patients with stroke using ankle-foot orthosis (AFO) has been compared to the effects of non-AFO use in previous studies, but the effect of different kinds of AFOs has not been clear. When considering the effect of different kinds of AFOs on gait, the dorsiflexion and plantar flexion moment of resistance is considered a key determinant of functional effect. In this study, the effect on gait of using an AFO with an oil damper (AFO-OD), which has plantar flexion resistance but no dorsiflexion resistance, and a nonarticulated AFO, which has both dorsiflexion and plantar flexion resistance, were compared in a randomized controlled trial. MethodsForty-one patients (31 men, 10 women; mean age 58.4 ± 11.3 years) in the subacute phase of stroke were randomly allocated to two groups to undergo 2 weeks of gait training by physiotherapists while wearing an AFO-OD or a nonarticulated AFO. A motion capture system was utilized to measure shod gait without orthosis at baseline and after training with the allocated AFO. Data analysis was performed focused on the spatial and temporal parameters, ground reaction force, shank-to-vertical angle, and ankle joint kinematics and kinetics. Two-way mixed ANOVA was performed to clarify the effect of AFO use and the difference between the two AFOs. ResultsThirty-six patients completed the study (17 in the AFO-OD group and 19 in the nonarticulated AFO group). Spatial and temporal parameters and ankle joint kinematics were improved after 2 weeks in both AFO groups. Interactions were found for the range of shank-to-vertical angles in paretic single stance and ankle peak power absorption. In the AFO-OD group, both parameters improved when the participants walked with the AFO compared to the shod gait, but there was no change in the nonarticulated AFO group. Power generation was not increased in either AFO group. ConclusionsThe results of this study showed that AFO with plantar flexion resistance but without dorsiflexion resistance improved the range of the shank-to-vertical angle and ankle power absorption but not power generation in a paretic stance. (336/350 words)Trial registration: UMIN000028126 Registered 1 August 2017,https://upload.umin.ac.jp/cgi-bin/icdr/ctr_menu_form_reg.cgi?recptno=R000032197


2015 ◽  
Vol 42 ◽  
pp. S83-S84
Author(s):  
Y.L. Kerkum ◽  
H. Houdijk ◽  
M.L.C. Kessels ◽  
A. Sterk ◽  
F. Steenbrink ◽  
...  

2017 ◽  
Vol 18 (2) ◽  
pp. 160-175 ◽  
Author(s):  
Elnaz Esfandiari ◽  
Mokhtar Arazpour ◽  
Hassan Saeedi ◽  
Amir Ahmadi

2019 ◽  
Vol 69 ◽  
pp. 101-111 ◽  
Author(s):  
Deema Totah ◽  
Meghna Menon ◽  
Carlie Jones-Hershinow ◽  
Kira Barton ◽  
Deanna H. Gates

2021 ◽  
Vol 13 (2) ◽  
pp. 737
Author(s):  
Indre Siksnelyte-Butkiene ◽  
Dalia Streimikiene ◽  
Tomas Balezentis ◽  
Virgilijus Skulskis

The European Commission has recently adopted the Renovation Wave Strategy, aiming at the improvement of the energy performance of buildings. The strategy aims to at least double renovation rates in the next ten years and make sure that renovations lead to higher energy and resource efficiency. The choice of appropriate thermal insulation materials is one of the simplest and, at the same time, the most popular strategies that effectively reduce the energy demand of buildings. Today, the spectrum of insulation materials is quite wide, and each material has its own specific characteristics. It is recognized that the selection of materials is one of the most challenging and difficult steps of a building project. This paper aims to give an in-depth view of existing multi-criteria decision-making (MCDM) applications for the selection of insulation materials and to provide major insights in order to simplify the process of methods and criteria selection for future research. A systematic literature review is performed based on the Search, Appraisal, Synthesis and Analysis (SALSA) framework and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. In order to determine which MCDM method is the most appropriate for different questions, the main advantages and disadvantages of different methods are provided.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoo Jin Choo ◽  
Min Cheol Chang

AbstractWe conducted a meta-analysis to investigate the effectiveness of ankle–foot orthosis (AFO) use in improving gait biomechanical parameters such as walking speed, mobility, and kinematics in patients with stroke with gait disturbance. We searched the MEDLINE (Medical Literature Analysis and Retrieval System Online), CINAHL (Cumulative Index to Nursing and Allied Health Literature), Cochrane, Embase, and Scopus databases and retrieved studies published until June 2021. Experimental and prospective studies were included that evaluated biomechanics or kinematic parameters with or without AFO in patients with stroke. We analyzed gait biomechanical parameters, including walking speed, mobility, balance, and kinematic variables, in studies involving patients with and without AFO use. The criteria of the Cochrane Handbook for Systematic Reviews of Interventions were used to evaluate the methodological quality of the studies, and the level of evidence was evaluated using the Research Pyramid model. Funnel plot analysis and Egger’s test were performed to confirm publication bias. A total of 19 studies including 434 participants that reported on the immediate or short-term effectiveness of AFO use were included in the analysis. Significant improvements in walking speed (standardized mean difference [SMD], 0.50; 95% CI 0.34–0.66; P < 0.00001; I2, 0%), cadence (SMD, 0.42; 95% CI 0.22–0.62; P < 0.0001; I2, 0%), step length (SMD, 0.41; 95% CI 0.18–0.63; P = 0.0003; I2, 2%), stride length (SMD, 0.43; 95% CI 0.15–0.71; P = 0.003; I2, 7%), Timed up-and-go test (SMD, − 0.30; 95% CI − 0.54 to − 0.07; P = 0.01; I2, 0%), functional ambulation category (FAC) score (SMD, 1.61; 95% CI 1.19–2.02; P < 0.00001; I2, 0%), ankle sagittal plane angle at initial contact (SMD, 0.66; 95% CI 0.34–0.98; P < 0.0001; I2, 0%), and knee sagittal plane angle at toe-off (SMD, 0.39; 95% CI 0.04–0.73; P = 0.03; I2, 46%) were observed when the patients wore AFOs. Stride time, body sway, and hip sagittal plane angle at toe-off were not significantly improved (p = 0.74, p = 0.07, p = 0.07, respectively). Among these results, the FAC score showed the most significant improvement, and stride time showed the lowest improvement. AFO improves walking speed, cadence, step length, and stride length, particularly in patients with stroke. AFO is considered beneficial in enhancing gait stability and ambulatory ability.


2012 ◽  
Vol 45 (15) ◽  
pp. 2658-2661 ◽  
Author(s):  
Marcelo Andrés Gatti ◽  
Orestes Freixes ◽  
Sergio Anibal Fernández ◽  
Maria Elisa Rivas ◽  
Marcos Crespo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document