Asymmetries in the climate response to CO2 emissions and removals

Author(s):  
Kirsten Zickfeld ◽  
Alexander MacIsaac ◽  
Sabine Mathesius ◽  
H. Damon Mattews
2009 ◽  
Vol 22 (19) ◽  
pp. 5232-5250 ◽  
Author(s):  
J. M. Gregory ◽  
C. D. Jones ◽  
P. Cadule ◽  
P. Friedlingstein

Abstract Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, and thus compares their magnitudes. The carbon cycle gives rise to two climate feedback terms: the concentration–carbon feedback, resulting from the uptake of carbon by land and ocean as a biogeochemical response to the atmospheric CO2 concentration, and the climate–carbon feedback, resulting from the effect of climate change on carbon fluxes. In the earth system models of the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP), climate–carbon feedback on warming is positive and of a similar size to the cloud feedback. The concentration–carbon feedback is negative; it has generally received less attention in the literature, but in magnitude it is 4 times larger than the climate–carbon feedback and more uncertain. The concentration–carbon feedback is the dominant uncertainty in the allowable CO2 emissions that are consistent with a given CO2 concentration scenario. In modeling the climate response to a scenario of CO2 emissions, the net carbon cycle feedback is of comparable size and uncertainty to the noncarbon–climate response. To quantify simulated carbon cycle feedbacks satisfactorily, a radiatively coupled experiment is needed, in addition to the fully coupled and biogeochemically coupled experiments, which are referred to as coupled and uncoupled in C4MIP. The concentration–carbon and climate–carbon feedbacks do not combine linearly, and the concentration–carbon feedback is dependent on scenario and time.


2021 ◽  
Author(s):  
Martin Rypdal ◽  
Niklas Boers ◽  
Hege-Beate Fredriksen ◽  
Kai-Uwe Eiselt ◽  
Andreas Johansen ◽  
...  

Abstract A remaining carbon budget (RCB) estimates how much CO2 we can emit and still reach a specific temperature target. The RCB concept is attractive since it easily communicates to the public and policymakers, but RCBs are also subject to uncertainties. The expected warming levels for a given carbon budget has a wide uncertainty range, which increases with less ambitious targets, i.e., with higher CO2 emissions and temperatures. Leading causes of RCB uncertainty are the future non-CO2 emissions, Earth system feedbacks, and the spread in the climate sensitivity among climate models. The latter is investigated in this paper, using a simple carbon cycle model and emulators of the temperature responses of the Earth System Models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble. It is shown that the transient climate response to cumulative emissions of carbon (TCRE) is approximately proportional to the transient climate response (TCR), suggesting that observational constraints imposed on climate sensitivity in the model ensemble can reduce uncertainty in RCB estimates.


2020 ◽  
Vol 125 (24) ◽  
Author(s):  
Clara Orbe ◽  
David Rind ◽  
Jeffrey Jonas ◽  
Larissa Nazarenko ◽  
Greg Faluvegi ◽  
...  

2019 ◽  
Vol 5 (4) ◽  
pp. 410-427 ◽  
Author(s):  
Ryan P. Thombs ◽  
Xiaorui Huang

The macro-comparative decoupling literature has often sought to test the arguments made by the treadmill of production (TP) and ecological modernization (EM) theories. However, due to data limitations, these studies have been limited to analyzing the years after 1960. Given that both theories discuss historical processes operating before 1960, analyzing pre-1960 data is warranted to more comprehensively test the propositions made by both theories. We assess the long-term relationship between economic growth and CO2 emissions from 1870 to 2014 using a sample of global North nations. We use Prais-Winsten regression models with time interactions to assess whether, when, and how much CO2 emissions have decoupled from economic growth over time. We find that significant relative decoupling has occurred twice since 1870: during the last 30 years of the nineteenth century, the timing of which is contrary to what both the EM and TP theories might expect, and after 1970. We also observe that the relationship remained relatively stable from the turn of the twentieth century to approximately 1970, which aligns with the arguments made by the classical TP work. We conclude that shifts in the global organization of production have shaped the magnitude of the economic growth–CO2 emissions relationship and its changes over time, which has implications for climate mitigation policy.


Sign in / Sign up

Export Citation Format

Share Document