scholarly journals Electrochemical Sensing on a Nanostructured Silicon Mass Spectrometry Surface

Author(s):  
Tsao CW ◽  
◽  
Guo ZM ◽  

Mass Spectrometry (MS) is a widely used analytical tool that provides quantitive information (molecule weight and intensity) of the analyte. Nanostructured silicon-based surface-assisted desorption/ionization mass spectrometry (LDI-MS) provides matrix-free and high sensitivity advantages. However, the mass spectrometer is a large and expensive tool limiting the onsite screening or point-of-care testing applications. Electrochemical sensing, on the other hand, is a simple and less-expensive detection method that can be used as portable onsite screening purposes. If the nanostructure silicon (nSi) surface can be used for electrochemical sensing, it opens the possibility of using nSi surface for both electrochemical sensing and Mass Spectrometry (MS) detection. Therefore, in this paper, we demonstrate the feasibility of using nSi surface for electrochemical sensing. Effects of the major nSi surface process parameters, including metal-assisted etching time and electroless Au decoration/deposition time to the electrochemical was evaluated.

RSC Advances ◽  
2018 ◽  
Vol 8 (31) ◽  
pp. 17293-17299 ◽  
Author(s):  
Wei Kou ◽  
Hua Zhang ◽  
Aisha Bibi ◽  
Mufang Ke ◽  
Jing Han ◽  
...  

A simple, fast and high-sensitivity method for quantification of fluoroquinolones in environmental water samples using MIPs-iEESI-MS.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4979
Author(s):  
Marco Giampà ◽  
Elvira Sgobba

Noncovalent interactions are the keys to the structural organization of biomolecule e.g., proteins, glycans, lipids in the process of molecular recognition processes e.g., enzyme-substrate, antigen-antibody. Protein interactions lead to conformational changes, which dictate the functionality of that protein-protein complex. Besides biophysics techniques, noncovalent interaction and conformational dynamics, can be studied via mass spectrometry (MS), which represents a powerful tool, due to its low sample consumption, high sensitivity, and label-free sample. In this review, the focus will be placed on Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) and its role in the analysis of protein-protein noncovalent assemblies exploring the relationship within noncovalent interaction, conformation, and biological function.


Sign in / Sign up

Export Citation Format

Share Document