On the structure of nonstabilizer Cliford codes

2004 ◽  
Vol 4 (2) ◽  
pp. 152-160
Author(s):  
A.A. Klappenecker ◽  
M. Rotteler

Clifford codes are a class of quantum error control codes that form a natural generalization of stabilizer codes. These codes were introduced in 1996 by Knill, but only a single Clifford code was known, which was not already a stabilizer code. We derive a necessary and sufficient condition that allows one to decide when a Clifford code is a stabilizer code, and compile a table of all true Clifford codes for error groups of small order.

2015 ◽  
Vol 13 (03) ◽  
pp. 1550031 ◽  
Author(s):  
Abdullah Dertli ◽  
Yasemin Cengellenmis ◽  
Senol Eren

In this paper, quantum codes from cyclic codes over A2 = F2 + uF2 + vF2 + uvF2, u2 = u, v2 = v, uv = vu, for arbitrary length n have been constructed. It is shown that if C is self orthogonal over A2, then so is Ψ(C), where Ψ is a Gray map. A necessary and sufficient condition for cyclic codes over A2 that contains its dual has also been given. Finally, the parameters of quantum error correcting codes are obtained from cyclic codes over A2.


2016 ◽  
Vol 14 (01) ◽  
pp. 1650012 ◽  
Author(s):  
Abdullah Dertli ◽  
Yasemin Cengellenmis ◽  
Senol Eren

In this paper, we study the structure of cyclic, quasi-cyclic codes and their skew codes over the finite ring [Formula: see text], [Formula: see text] for [Formula: see text]. The Gray images of cyclic, quasi-cyclic, skew cyclic, skew quasi-cyclic codes over [Formula: see text] are obtained. A necessary and sufficient condition for cyclic code over [Formula: see text] that contains its dual has been given. The parameters of quantum error correcting codes are obtained from cyclic codes over [Formula: see text].


Author(s):  
Diego Marcondes ◽  
Cláudia Peixoto ◽  
Kdson Souza ◽  
Sergio Wechsler

In his best-selling book An Introduction to Probability Theory and its Applications, W. Feller established a way of ending the St. Petersburg Paradox by the introduction of an entrance fee, and provided it for the case in which the game is played with a fair coin. A natural generalization of his method is to establish the entrance fee for the case in which the probability of head is θ (0 < θ < 1/2). The deduction of those fees is the main result of Section 2. We then propose a Bayesian approach to the problem. When the probability of head is θ (1/2 < θ < 1) the expected gain of the St. Petersburg Game is finite, therefore there is no paradox. However, if one takes θ as a random variable assuming values in (1/2,1) the paradox may hold, what is counter-intuitive. On Section 3 we determine a necessary and sufficient condition for the absence of paradox on the Bayesian approach and on Section 4 we establish the entrance fee for the case in which θ is uniformly distributed in (1/2,1), for in this case there is paradox.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 288
Author(s):  
Wojciech Górecki ◽  
Sisi Zhou ◽  
Liang Jiang ◽  
Rafał Demkowicz-Dobrzański

We derive a necessary and sufficient condition for the possibility of achieving the Heisenberg scaling in general adaptive multi-parameter estimation schemes in presence of Markovian noise. In situations where the Heisenberg scaling is achievable, we provide a semidefinite program to identify the optimal quantum error correcting (QEC) protocol that yields the best estimation precision. We overcome the technical challenges associated with potential incompatibility of the measurement optimally extracting information on different parameters by utilizing the Holevo Cramér-Rao (HCR) bound for pure states. We provide examples of significant advantages offered by our joint-QEC protocols, that sense all the parameters utilizing a single error-corrected subspace, over separate-QEC protocols where each parameter is effectively sensed in a separate subspace.


2003 ◽  
Vol 17 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Mark H. Taylor ◽  
F. Todd DeZoort ◽  
Edward Munn ◽  
Martha Wetterhall Thomas

This paper introduces an auditor reliability framework that repositions the role of auditor independence in the accounting profession. The framework is motivated in part by widespread confusion about independence and the auditing profession's continuing problems with managing independence and inspiring public confidence. We use philosophical, theoretical, and professional arguments to argue that the public interest will be best served by reprioritizing professional and ethical objectives to establish reliability in fact and appearance as the cornerstone of the profession, rather than relationship-based independence in fact and appearance. This revised framework requires three foundation elements to control subjectivity in auditors' judgments and decisions: independence, integrity, and expertise. Each element is a necessary but not sufficient condition for maximizing objectivity. Objectivity, in turn, is a necessary and sufficient condition for achieving and maintaining reliability in fact and appearance.


Author(s):  
Thomas Sinclair

The Kantian account of political authority holds that the state is a necessary and sufficient condition of our freedom. We cannot be free outside the state, Kantians argue, because any attempt to have the “acquired rights” necessary for our freedom implicates us in objectionable relations of dependence on private judgment. Only in the state can this problem be overcome. But it is not clear how mere institutions could make the necessary difference, and contemporary Kantians have not offered compelling explanations. A detailed analysis is presented of the problems Kantians identify with the state of nature and the objections they face in claiming that the state overcomes them. A response is sketched on behalf of Kantians. The key idea is that under state institutions, a person can make claims of acquired right without presupposing that she is by nature exceptional in her capacity to bind others.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 352-366
Author(s):  
Thomas Berry ◽  
Matt Visser

In this paper, Lorentz boosts and Wigner rotations are considered from a (complexified) quaternionic point of view. It is demonstrated that, for a suitably defined self-adjoint complex quaternionic 4-velocity, pure Lorentz boosts can be phrased in terms of the quaternion square root of the relative 4-velocity connecting the two inertial frames. Straightforward computations then lead to quite explicit and relatively simple algebraic formulae for the composition of 4-velocities and the Wigner angle. The Wigner rotation is subsequently related to the generic non-associativity of the composition of three 4-velocities, and a necessary and sufficient condition is developed for the associativity to hold. Finally, the authors relate the composition of 4-velocities to a specific implementation of the Baker–Campbell–Hausdorff theorem. As compared to ordinary 4×4 Lorentz transformations, the use of self-adjoint complexified quaternions leads, from a computational view, to storage savings and more rapid computations, and from a pedagogical view to to relatively simple and explicit formulae.


Sign in / Sign up

Export Citation Format

Share Document