Efficient classical simulations of quantum Fourier transforms and Normalizer circuits over Abelian groups

2013 ◽  
Vol 13 (11&12) ◽  
pp. 1007-1037
Author(s):  
Maarten Van den Nest

The quantum Fourier transform (QFT) is an important ingredient in various quantum algorithms which achieve superpolynomial speed-ups over classical computers. In this paper we study under which conditions the QFT can be simulated efficiently classically. We introduce a class of quantum circuits, called \emph{normalizer circuits}: a normalizer circuit over a finite Abelian group is any quantum circuit comprising the QFT over the group, gates which compute automorphisms and gates which realize quadratic functions on the group. In our main result we prove that all normalizer circuits have polynomial-time classical simulations. The proof uses algorithms for linear diophantine equation solving and the monomial matrix formalism introduced in our earlier work. Our result generalizes the Gottesman-Knill theorem: in particular, Clifford circuits for $d$-level qudits arise as normalizer circuits over the group ${\mathbf Z}_d^m$. We also highlight connections between normalizer circuits and Shor's factoring algorithm, and the Abelian hidden subgroup problem in general. Finally we prove that quantum factoring cannot be realized as a normalizer circuit owing to its modular exponentiation subroutine.

2014 ◽  
Vol 14 (5&6) ◽  
pp. 467-492
Author(s):  
Asif Shakeel

The Hidden Subgroup Problem (HSP) is at the forefront of problems in quantum algorithms. In this paper, we introduce a new query, the \textit{character} query, generalizing the well-known phase kickback trick that was first used successfully to efficiently solve Deutsch's problem. An equal superposition query with $\vert 0 \rangle$ in the response register is typically used in the ``standard method" of single-query algorithms for the HSP. The proposed character query improves over this query by maximizing the success probability of subgroup identification under a uniform prior, for the HSP in which the oracle functions take values in a finite abelian group. We apply our results to the case when the subgroups are drawn from a set of conjugate subgroups and obtain a success probability greater than that found by Moore and Russell.


2007 ◽  
Vol 7 (5&6) ◽  
pp. 559-570
Author(s):  
Y. Inui ◽  
F. Le Gall

In this paper, we consider the hidden subgroup problem (HSP) over the class of semi-direct product groups $\mathbb{Z}_{p^r}\rtimes\mathbb{Z}_q$, for $p$ and $q$ prime. We first present a classification of these groups in five classes. Then, we describe a polynomial-time quantum algorithm solving the HSP over all the groups of one of these classes: the groups of the form $\mathbb{Z}_{p^r}\rtimes\mathbb{Z}_p$, where $p$ is an odd prime. Our algorithm works even in the most general case where the group is presented as a black-box group with not necessarily unique encoding. Finally, we extend this result and present an efficient algorithm solving the HSP over the groups $\mathbb{Z}^m_{p^r}\rtimes\mathbb{Z}_p$.


2007 ◽  
Vol 7 (1&2) ◽  
pp. 83-92
Author(s):  
R. Schutzhold ◽  
W.G. Unruh

The fastest quantum algorithms (for the solution of classical computational tasks) known so far are basically variations of the hidden subgroup problem with {$f(U[x])=f(x)$}. Following a discussion regarding which tasks might be solved efficiently by quantum computers, it will be demonstrated by means of a simple example, that the detection of more general hidden (two-point) symmetries {$V\{f(x),f(U[x])\}=0$} by a quantum algorithm can also admit an exponential speed-up. E.g., one member of this class of symmetries {$V\{f(x),f(U[x])\}=0$} is discrete self-similarity (or discrete scale invariance).


2003 ◽  
Vol 14 (05) ◽  
pp. 723-739 ◽  
Author(s):  
GÁBOR IVANYOS ◽  
FRÉDÉRIC MAGNIEZ ◽  
MIKLOS SANTHA

In this paper we show that certain special cases of the hidden subgroup problem can be solved in polynomial time by a quantum algorithm. These special cases involve finding hidden normal subgroups of solvable groups and permutation groups, finding hidden subgroups of groups with small commutator subgroup and of groups admitting an elementary Abelian normal 2-subgroup of small index or with cyclic factor group.


2017 ◽  
Vol 18 (2) ◽  
pp. 0215 ◽  
Author(s):  
Demerson Nunes Gonçalves ◽  
Tharso D Fernandes ◽  
C M M Cosme

The hidden subgroup problem (HSP) plays an important role in quantum computation, because many quantum algorithms that are exponentially faster than classical algorithms are special cases of the HSP. In this paper we show that there exist a new efficient quantum algorithm for the HSP on groups $\Z_{N}\rtimes\Z_{q^s}$ where $N$ is an integer with a special prime factorization, $q$ prime number and $s$ any positive integer.


2016 ◽  
Vol 16 (5&6) ◽  
pp. 361-422 ◽  
Author(s):  
Juan Bermejo-Vega ◽  
Cedric Yen-Yu Lin ◽  
Maarten Van den Nest

Normalizer circuits [1, 2] are generalized Clifford circuits that act on arbitrary finitedimensional systems Hd1 ⊗ · · · ⊗ Hdn with a standard basis labeled by the elements of a finite Abelian group G = Zd1 × · · · × Zdn . Normalizer gates implement operations associated with the group G and can be of three types: quantum Fourier transforms, group automorphism gates and quadratic phase gates. In this work, we extend the normalizer formalism [1, 2] to infinite dimensions, by allowing normalizer gates to act on systems of the form H⊗a Z : each factor HZ has a standard basis labeled by integers Z, and a Fourier basis labeled by angles, elements of the circle group T. Normalizer circuits become hybrid quantum circuits acting both on continuous- and discrete-variable systems. We show that infinite-dimensional normalizer circuits can be efficiently simulated classically with a generalized stabilizer formalism for Hilbert spaces associated with groups of the form Z a ×T b ×Zd1 ×· · ·×Zdn . We develop new techniques to track stabilizer-groups based on normal forms for group automorphisms and quadratic functions. We use our normal forms to reduce the problem of simulating normalizer circuits to that of finding general solutions of systems of mixed real-integer linear equations [3] and exploit this fact to devise a robust simulation algorithm: the latter remains efficient even in pathological cases where stabilizer groups become infinite, uncountable and non-compact. The techniques developed in this paper might find applications in the study of fault-tolerant quantum computation with superconducting qubits [4, 5].


2009 ◽  
Vol 9 (5&6) ◽  
pp. 500-512
Author(s):  
A. Montanaro

We consider a recently proposed generalisation of the abelian hidden subgroup problem: the {\em shifted subset problem}. The problem is to determine a subset $S$ of some abelian group, given access to quantum states of the form $\ket{S+x}$, for some unknown shift $x$. We give quantum algorithms to find Hamming spheres and other subsets of the boolean cube $\{0,1\}^n$. The algorithms have time complexity polynomial in $n$ and give rise to exponential separations from classical computation.


Sign in / Sign up

Export Citation Format

Share Document