scholarly journals Normalizer circuits and a Gottesman-Knill theorem for infinite-dimensional systems

2016 ◽  
Vol 16 (5&6) ◽  
pp. 361-422 ◽  
Author(s):  
Juan Bermejo-Vega ◽  
Cedric Yen-Yu Lin ◽  
Maarten Van den Nest

Normalizer circuits [1, 2] are generalized Clifford circuits that act on arbitrary finitedimensional systems Hd1 ⊗ · · · ⊗ Hdn with a standard basis labeled by the elements of a finite Abelian group G = Zd1 × · · · × Zdn . Normalizer gates implement operations associated with the group G and can be of three types: quantum Fourier transforms, group automorphism gates and quadratic phase gates. In this work, we extend the normalizer formalism [1, 2] to infinite dimensions, by allowing normalizer gates to act on systems of the form H⊗a Z : each factor HZ has a standard basis labeled by integers Z, and a Fourier basis labeled by angles, elements of the circle group T. Normalizer circuits become hybrid quantum circuits acting both on continuous- and discrete-variable systems. We show that infinite-dimensional normalizer circuits can be efficiently simulated classically with a generalized stabilizer formalism for Hilbert spaces associated with groups of the form Z a ×T b ×Zd1 ×· · ·×Zdn . We develop new techniques to track stabilizer-groups based on normal forms for group automorphisms and quadratic functions. We use our normal forms to reduce the problem of simulating normalizer circuits to that of finding general solutions of systems of mixed real-integer linear equations [3] and exploit this fact to devise a robust simulation algorithm: the latter remains efficient even in pathological cases where stabilizer groups become infinite, uncountable and non-compact. The techniques developed in this paper might find applications in the study of fault-tolerant quantum computation with superconducting qubits [4, 5].

2013 ◽  
Vol 13 (11&12) ◽  
pp. 1007-1037
Author(s):  
Maarten Van den Nest

The quantum Fourier transform (QFT) is an important ingredient in various quantum algorithms which achieve superpolynomial speed-ups over classical computers. In this paper we study under which conditions the QFT can be simulated efficiently classically. We introduce a class of quantum circuits, called \emph{normalizer circuits}: a normalizer circuit over a finite Abelian group is any quantum circuit comprising the QFT over the group, gates which compute automorphisms and gates which realize quadratic functions on the group. In our main result we prove that all normalizer circuits have polynomial-time classical simulations. The proof uses algorithms for linear diophantine equation solving and the monomial matrix formalism introduced in our earlier work. Our result generalizes the Gottesman-Knill theorem: in particular, Clifford circuits for $d$-level qudits arise as normalizer circuits over the group ${\mathbf Z}_d^m$. We also highlight connections between normalizer circuits and Shor's factoring algorithm, and the Abelian hidden subgroup problem in general. Finally we prove that quantum factoring cannot be realized as a normalizer circuit owing to its modular exponentiation subroutine.


2019 ◽  
Vol 374 (2) ◽  
pp. 823-871 ◽  
Author(s):  
Simon Becker ◽  
Nilanjana Datta

Abstract By extending the concept of energy-constrained diamond norms, we obtain continuity bounds on the dynamics of both closed and open quantum systems in infinite dimensions, which are stronger than previously known bounds. We extensively discuss applications of our theory to quantum speed limits, attenuator and amplifier channels, the quantum Boltzmann equation, and quantum Brownian motion. Next, we obtain explicit log-Lipschitz continuity bounds for entropies of infinite-dimensional quantum systems, and classical capacities of infinite-dimensional quantum channels under energy-constraints. These bounds are determined by the high energy spectrum of the underlying Hamiltonian and can be evaluated using Weyl’s law.


2021 ◽  
Vol 34 (2) ◽  
pp. 141-173
Author(s):  
Hirofumi Osada

We explain the general theories involved in solving an infinite-dimensional stochastic differential equation (ISDE) for interacting Brownian motions in infinite dimensions related to random matrices. Typical examples are the stochastic dynamics of infinite particle systems with logarithmic interaction potentials such as the sine, Airy, Bessel, and also for the Ginibre interacting Brownian motions. The first three are infinite-dimensional stochastic dynamics in one-dimensional space related to random matrices called Gaussian ensembles. They are the stationary distributions of interacting Brownian motions and given by the limit point processes of the distributions of eigenvalues of these random matrices. The sine, Airy, and Bessel point processes and interacting Brownian motions are thought to be geometrically and dynamically universal as the limits of bulk, soft edge, and hard edge scaling. The Ginibre point process is a rotation- and translation-invariant point process on R 2 \mathbb {R}^2 , and an equilibrium state of the Ginibre interacting Brownian motions. It is the bulk limit of the distributions of eigenvalues of non-Hermitian Gaussian random matrices. When the interacting Brownian motions constitute a one-dimensional system interacting with each other through the logarithmic potential with inverse temperature β = 2 \beta = 2 , an algebraic construction is known in which the stochastic dynamics are defined by the space-time correlation function. The approach based on the stochastic analysis (called the analytic approach) can be applied to an extremely wide class. If we apply the analytic approach to this system, we see that these two constructions give the same stochastic dynamics. From the algebraic construction, despite being an infinite interacting particle system, it is possible to represent and calculate various quantities such as moments by the correlation functions. We can thus obtain quantitative information. From the analytic construction, it is possible to represent the dynamics as a solution of an ISDE. We can obtain qualitative information such as semi-martingale properties, continuity, and non-collision properties of each particle, and the strong Markov property of the infinite particle system as a whole. Ginibre interacting Brownian motions constitute a two-dimensional infinite particle system related to non-Hermitian Gaussian random matrices. It has a logarithmic interaction potential with β = 2 \beta = 2 , but no algebraic configurations are known.The present result is the only construction.


Author(s):  
Mzaki Dakel ◽  
Sébastien Baguet ◽  
Régis Dufour

In ship and aircraft turbine rotors, the rotating mass unbalance and the different movements of the rotor base are among the main causes of vibrations in bending. The goal of this paper is to investigate the dynamic behavior of an on-board rotor under rigid base excitations. The modeling takes into consideration six types of base deterministic motions (rotations and translations) when the kinetic and strain energies in addition to the virtual work of the rotating flexible rotor components are computed. The finite element method is used in the rotor modeling by employing the Timoshenko beam theory. The proposed on-board rotor model takes into account the rotary inertia, the gyroscopic inertia, the shear deformation of shaft as well as the geometric asymmetry of shaft and/or rigid disk. The Lagrange’s equations are applied to establish the differential equations of the rotor in bending with respect to the rigid base which represents a noninertial reference frame. The linear equations of motion display periodic parametric coefficients due to the asymmetry of the rotor and time-varying parametric coefficients due to the base rotational motions. In the proposed applications, the rotor mounted on rigid/elastic bearings is excited by a rotating mass unbalance associated with sinusoidal vibrations of the rigid base. The dynamic behavior of the rotor is analyzed by means of orbits of the rotor as well as fast Fourier transforms (FFTs).


2016 ◽  
Vol 26 (06) ◽  
pp. 1125-1140 ◽  
Author(s):  
Lucio Centrone ◽  
Viviane Ribeiro Tomaz da Silva

Let [Formula: see text] be a finite abelian group. As a consequence of the results of Di Vincenzo and Nardozza, we have that the generators of the [Formula: see text]-ideal of [Formula: see text]-graded identities of a [Formula: see text]-graded algebra in characteristic 0 and the generators of the [Formula: see text]-ideal of [Formula: see text]-graded identities of its tensor product by the infinite-dimensional Grassmann algebra [Formula: see text] endowed with the canonical grading have pairly the same degree. In this paper, we deal with [Formula: see text]-graded identities of [Formula: see text] over an infinite field of characteristic [Formula: see text], where [Formula: see text] is [Formula: see text] endowed with a specific [Formula: see text]-grading. We find identities of degree [Formula: see text] and [Formula: see text] while the maximal degree of a generator of the [Formula: see text]-graded identities of [Formula: see text] is [Formula: see text] if [Formula: see text]. Moreover, we find a basis of the [Formula: see text]-graded identities of [Formula: see text] and also a basis of multihomogeneous polynomials for the relatively free algebra. Finally, we compute the [Formula: see text]-graded Gelfand–Kirillov (GK) dimension of [Formula: see text].


2016 ◽  
Vol 16 (01) ◽  
pp. 1650003 ◽  
Author(s):  
Natasha Dobrinen

We extend the hierarchy of finite-dimensional Ellentuck spaces to infinite dimensions. Using uniform barriers [Formula: see text] on [Formula: see text] as the prototype structures, we construct a class of continuum many topological Ramsey spaces [Formula: see text] which are Ellentuck-like in nature, and form a linearly ordered hierarchy under projections. We prove new Ramsey-classification theorems for equivalence relations on fronts, and hence also on barriers, on the spaces [Formula: see text], extending the Pudlák–Rödl theorem for barriers on the Ellentuck space. The inspiration for these spaces comes from continuing the iterative construction of the forcings [Formula: see text] to the countable transfinite. The [Formula: see text]-closed partial order [Formula: see text] is forcing equivalent to [Formula: see text], which forces a non-p-point ultrafilter [Formula: see text]. This work forms the basis for further work classifying the Rudin–Keisler and Tukey structures for the hierarchy of the generic ultrafilters [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document