An upper bound on the threshold quantum decoherence rate

2004 ◽  
Vol 4 (3) ◽  
pp. 222-228
Author(s):  
A.A. Razborov

Let $\eta_0$ be the supremum of those $\eta$ for which every poly-size quantum circuit can be simulated by another poly-size quantum circuit with gates of fan-in $\leq 2$ that tolerates random noise independently occurring on all wires at the constant rate $\eta$. Recent fundamental results showing the principal fact $\eta_0>0$ give estimates like $\eta_0\geq 10^{-6}\mbox{--}10^{-4}$, whereas the only upper bound known before is $\eta_0\leq 0.74$.}{In this note we improve the latter bound to $\eta_0\leq 1/2$, under the assumption ${\bf QP}\not\subseteq {\bf QNC^1}$. More generally, we show that if the decoherence rate $\eta$ is greater than 1/2, then we can not even store a single qubit for more than logarithmic time. Our bound also generalizes to the simulating circuits allowing gates of any (constant) fan-in $k$, in which case we have $\eta_0\leq 1-\frac 1k$.

2011 ◽  
Vol 09 (03) ◽  
pp. 981-991 ◽  
Author(s):  
LAURA MAZZOLA ◽  
JYRKI PIILO ◽  
SABRINA MANISCALCO

We investigate the dynamics of quantum and classical correlations in a system of two qubits under local colored-noise dephasing channels. The time evolution of a single qubit interacting with its own environment is described by a memory kernel non-Markovian master equation. The memory effects of the non-Markovian reservoirs introduce new features in the dynamics of quantum and classical correlations compared to the white noise Markovian case. Depending on the geometry of the initial state, the system can exhibit frozen discord and multiple sudden transitions between classical and quantum decoherence [L. Mazzola, J. Piilo and S. Maniscalco, Phys. Rev. Lett. 104 (2010) 200401]. We provide a geometric interpretation of those phenomena in terms of the distance of the state under investigation to its closest classical state in the Hilbert space of the system.


2007 ◽  
Vol 7 (5&6) ◽  
pp. 551-558
Author(s):  
H. Fan ◽  
B.-Y. Liu ◽  
K.-J. Shi

Quantum cloning of two identical mixed qubits $\rho \otimes \rho$ is studied. We propose the quantum cloning transformations not only for the triplet (symmetric) states but also for the singlet (antisymmetric) state. We can copy these two identical mixed qubits to $M$ ($M\ge 2$) copies. This quantum cloning machine is optimal in the sense that the shrinking factor between the input and the output single qubit achieves the upper bound. The result shows that we can copy two identical mixed qubits with the same quality as that of two identical pure states.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 436 ◽  
Author(s):  
Adrián Pérez-Salinas ◽  
Diego García-Martín ◽  
Carlos Bravo-Prieto ◽  
José Latorre

We present a quantum circuit that transforms an unknown three-qubit state into its canonical form, up to relative phases, given many copies of the original state. The circuit is made of three single-qubit parametrized quantum gates, and the optimal values for the parameters are learned in a variational fashion. Once this transformation is achieved, direct measurement of outcome probabilities in the computational basis provides an estimate of the tangle, which quantifies genuine tripartite entanglement. We perform simulations on a set of random states under different noise conditions to asses the validity of the method.


Author(s):  
Akshay Gaikwad ◽  
Krishna Shende ◽  
Kavita Dorai

We experimentally performed complete and optimized quantum process tomography of quantum gates implemented on superconducting qubit-based IBM QX2 quantum processor via two constrained convex optimization (CCO) techniques: least squares optimization and compressed sensing optimization. We studied the performance of these methods by comparing the experimental complexity involved and the experimental fidelities obtained. We experimentally characterized several two-qubit quantum gates: identity gate, a controlled-NOT gate, and a SWAP gate. The general quantum circuit is efficient in the sense that the data needed to perform CCO-based process tomography can be directly acquired by measuring only a single qubit. The quantum circuit can be extended to higher dimensions and is also valid for other experimental platforms.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350001 ◽  
Author(s):  
MATTHEW McKAGUE

We consider the power of various quantum complexity classes with the restriction that states and operators are defined over a real, rather than complex, Hilbert space. It is well known that a quantum circuit over the complex numbers can be transformed into a quantum circuit over the real numbers with the addition of a single qubit. This implies that BQP retains its power when restricted to using states and operations over the reals. We show that the same is true for QMA (k), QIP (k), QMIP and QSZK.


Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 94 ◽  
Author(s):  
Johannes Bausch ◽  
Elizabeth Crosson

Feynman's circuit-to-Hamiltonian construction connects quantum computation and ground states of many-body quantum systems. Kitaev applied this construction to demonstrate QMA-completeness of the local Hamiltonian problem, and Aharanov et al. used it to show the equivalence of adiabatic computation and the quantum circuit model. In this work, we analyze the low energy properties of a class of modified circuit Hamiltonians, which include features like complex weights and branching transitions. For history states with linear clocks and complex weights, we develop a method for modifying the circuit propagation Hamiltonian to implement any desired distribution over the time steps of the circuit in a frustration-free ground state, and show that this can be used to obtain a constant output probability for universal adiabatic computation while retaining theΩ(T−2)scaling of the spectral gap, and without any additional overhead in terms of numbers of qubits.Furthermore, we establish limits on the increase in the ground energy due to input and output penalty terms for modified tridiagonal clocks with non-uniform distributions on the time steps by proving a tightO(T−2)upper bound on the product of the spectral gap and ground state overlap with the endpoints of the computation. Using variational techniques which go beyond theΩ(T−3)scaling that follows from the usual geometrical lemma, we prove that the standard Feynman-Kitaev Hamiltonian already saturates this bound. We review the formalism of unitary labeled graphs which replace the usual linear clock by graphs that allow branching and loops, and we extend theO(T−2)bound from linear clocks to this more general setting. In order to achieve this, we apply Chebyshev polynomials to generalize an upper bound on the spectral gap in terms of the graph diameter to the context of arbitrary Hermitian matrices.


2019 ◽  
Vol 17 (07) ◽  
pp. 1950052
Author(s):  
Ren-Ju Liu ◽  
Ming-Qiang Bai ◽  
Fan Wu ◽  
Yu-Chun Zhang

A scheme is proposed for cyclic-controlled quantum operation teleportation (CCQOT) for three sides with EPR and cluster states. Under the control of David, Alice can implement an unknown single-qubit unitary operation on the remote Bob’s quantum system, while Bob can execute a single-qubit unitary operation on Charlie’s quantum system and Charlie can also perform an unknown single-qubit unitary operation on Alice’s quantum system. Our scheme can be generalized to [Formula: see text]) agents involved in the cycle to realize the transmission of single-qubit operations. Moreover, by replacing the quantum channels, we can change the cyclic direction of controlled qunatum operation teleportation (CQOT) from clockwise to counterclockwise. In addition, we discuss our scheme in four types of noisy environments (amplitude-damping, phase-damping, bit-flip and phase-flip noisy environment), and use fidelity to analyze the amount of information lost in the process of CCQOT due to noise. The results show that the fidelity is determined by decoherence rate and amplitude parameters of the final state.


Author(s):  
Sergey Ulyanov ◽  
Andrey Reshetnikov ◽  
Olga Tyatyushkina

Models of Grover’s search algorithm is reviewed to build the foundation for the other algorithms. Thereafter, some preliminary modifications of the original algorithms by others are stated, that increases the applicability of the search procedure. A general quantum computation on an isolated system can be represented by a unitary matrix. In order to execute such a computation on a quantum computer, it is common to decompose the unitary into a quantum circuit, i.e., a sequence of quantum gates that can be physically implemented on a given architecture. There are different universal gate sets for quantum computation. Here we choose the universal gate set consisting of CNOT and single-qubit gates. We measure the cost of a circuit by the number of CNOT gates as they are usually more difficult to implement than single qubit gates and since the number of single-qubit gates is bounded by about twice the number of CNOT’s.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 226 ◽  
Author(s):  
Adrián Pérez-Salinas ◽  
Alba Cervera-Lierta ◽  
Elies Gil-Fuster ◽  
José I. Latorre

A single qubit provides sufficient computational capabilities to construct a universal quantum classifier when assisted with a classical subroutine. This fact may be surprising since a single qubit only offers a simple superposition of two states and single-qubit gates only make a rotation in the Bloch sphere. The key ingredient to circumvent these limitations is to allow for multiple data re-uploading. A quantum circuit can then be organized as a series of data re-uploading and single-qubit processing units. Furthermore, both data re-uploading and measurements can accommodate multiple dimensions in the input and several categories in the output, to conform to a universal quantum classifier. The extension of this idea to several qubits enhances the efficiency of the strategy as entanglement expands the superpositions carried along with the classification. Extensive benchmarking on different examples of the single- and multi-qubit quantum classifier validates its ability to describe and classify complex data.


Sign in / Sign up

Export Citation Format

Share Document