scholarly journals Environmentally friendly and roll-processed flexible organic solar cells based on PM6:Y6.

Author(s):  
Marcial Fernández Castro ◽  
Jean Truer ◽  
Moises Espindola-Rodriguez ◽  
Jens Wenzel Andreasen

Organic Solar Cells (OSCs) have reached the highest efficiencies using lab-scale on active areas far below 0.1 cm^2. This tends to widen the so-called “lab-to-fab gap”, which is one of the most important challenges to make OSCs competitive. The most commonly used fabrication technique is spin-coating, which has poor compatibility with large-scale techniques and substantial material waste. Moreover, other techniques such as blade or slot-die coating are much more suitable for roll-to-roll manufacturing processes, which is one of the advantages the technology has compared, for example, to silicon solar cells. However, only a few studies report solar cells using these fabrication techniques. Additionally, for the environmentally friendly OSC scale-up, inks based on non-hazardous solvent systems are needed. In this work, slot-die coating has been chosen to coat the PM6:Y6 active layer, using o-xylene, a green solvent, without additives. The optimal coating parameters are defined through fine-tuning of the coating parameters, such as the drying temperature and solution concentration. Moreover, ternary devices with PCBM, and fully printed devices are also fabricated. Power conversion efficiencies of 6.26% and 7.16% are achieved for binary PM6:Y6 and ternary PM6:Y6:PCBM devices, respectively.

2021 ◽  
Author(s):  
Marcial Fernández Castro ◽  
Jean Truer ◽  
Moises Espindola-Rodriguez ◽  
Jens Wenzel Andreasen

Organic Solar Cells (OSCs) have reached the highest efficiencies using lab-scale on active areas far below 0.1 cm^2. This tends to widen the so-called “lab-to-fab gap”, which is one of the most important challenges to make OSCs competitive. The most commonly used fabrication technique is spin-coating, which has poor compatibility with large-scale techniques and substantial material waste. Moreover, other techniques such as blade or slot-die coating are much more suitable for roll-to-roll manufacturing processes, which is one of the advantages the technology has compared, for example, to silicon solar cells. However, only a few studies report solar cells using these fabrication techniques. Additionally, for the environmentally friendly OSC scale-up, inks based on non-hazardous solvent systems are needed. In this work, slot-die coating has been chosen to coat the PM6:Y6 active layer, using o-xylene, a green solvent, without additives. The optimal coating parameters are defined through fine-tuning of the coating parameters, such as the drying temperature and solution concentration. Moreover, ternary devices with PCBM, and fully printed devices are also fabricated. Power conversion efficiencies of 6.26% and 7.16% are achieved for binary PM6:Y6 and ternary PM6:Y6:PCBM devices, respectively.


2021 ◽  
Author(s):  
Marcial Fernández Castro ◽  
Jean Truer ◽  
Moises Espindola-Rodriguez ◽  
Jens Wenzel Andreasen

Organic Solar Cells (OSCs) have reached the highest efficiencies using lab-scale on active areas far below 0.1 cm2. This tends to widen the so-called “lab-to-fab gap”, which is one of the most important challenges to make OSCs competitive. The most commonly used fabrication technique is spin-coating, which has poor compatibility with large-scale techniques and substantial material waste. Moreover, other techniques such as blade or slot-die coating are much more suitable for roll-to-roll manufacturing processes, which is one of the advantages the technology has compared, for example, to silicon solar cells. However, only a few studies report solar cells using these fabrication techniques. Additionally, for the environmentally friendly OSC scale-up, inks based on non-hazardous solvent systems are needed. In this work, slot-die coating has been chosen to coat the PM6:Y6 active layer, using o-xylene, a green solvent, without additives. The optimal coating parameters are defined through fine-tuning of the coating parameters, such as the drying temperature and solution concentration. Moreover, ternary devices with PCBM, and fully printed devices are also fabricated. Power conversion efficiencies of 6.26% and 7.16% are achieved for binary PM6:Y6 and ternary PM6:Y6:PCBM devices, respectively.


2021 ◽  
pp. 2105114
Author(s):  
Heng Zhao ◽  
Baojun Lin ◽  
Jingwei Xue ◽  
Hafiz Bilal Naveed ◽  
Chao Zhao ◽  
...  

2021 ◽  
Author(s):  
Jun Wang ◽  
Michael R. Squillante ◽  
Siraj Sidhik ◽  
Aditya Mohite ◽  
Matthew S. J. Marshall

2018 ◽  
Vol 5 (5) ◽  
pp. 172158 ◽  
Author(s):  
Daniel Burkitt ◽  
Justin Searle ◽  
Trystan Watson

The fabrication of perovskite solar cells in an N-I-P structure with compact titanium dioxide blocking, mesoporous titanium dioxide scaffold, single-step perovskite and hole-transport layers deposited using the slot-die coating technique is reported. Devices on fluorine-doped tin oxide-coated glass substrates with evaporated gold top contacts and four slot-die-coated layers are demonstrated, and best cells reach stabilized power conversion efficiencies of 7%. This work demonstrates the suitability of slot-die coating for the production of layers within this perovskite solar cell stack and the potential to transfer to large area and roll-to-roll manufacturing processes.


Author(s):  
Ping Yang ◽  
Tianqi Zhai ◽  
Boyang Yu ◽  
Gengxin Du ◽  
BaoXiu Mi ◽  
...  

With the surge of the power conversion efficiencies (PCEs) of organic solar cells (OSCs) in recent years, the commercialization of OSCs calls for scalable and environmentally friendly manufacturing techniques. Aerosol...


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7439
Author(s):  
Safa Shoaee ◽  
Anna Laura Sanna ◽  
Giuseppe Sforazzini

Organic solar cells have the potential to become the cheapest form of electricity. Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors. Next generation photovoltaics based upon environmentally benign “green solvent” processing of organic semiconductors promise a step-change in the adaptability and versatility of solar technologies and promote sustainable development. However, high-performing OSCs are still processed by halogenated (non-environmentally friendly) solvents, so hindering their large-scale manufacture. In this perspective, we discuss the recent progress in developing highly efficient OSCs processed from eco-compatible solvents, and highlight research challenges that should be addressed for the future development of high power conversion efficiencies devices.


Solar Energy ◽  
2017 ◽  
Vol 146 ◽  
pp. 79-84 ◽  
Author(s):  
Enrique Pérez-Gutiérrez ◽  
Juan Lozano ◽  
Jorge Gaspar-Tánori ◽  
José-Luis Maldonado ◽  
Blanca Gómez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document