scholarly journals Metal-Hydrogen-Pi-Bonded Organic Frameworks

Author(s):  
laura samperisi ◽  
xiaodong zou ◽  
zhehao huang ◽  
akif tezcan ◽  
jie zhu ◽  
...  

We report the synthesis and characterization of a new series of permanently porous, three-dimensional metal-organic frameworks (MOFs), M-HAF-2 (M= Fe, Ga or In), constructed from tetratopic, hydroxamate-based, chelating linkers. The structure of M-HAF-2 was determined by three-dimensional electron diffraction (3DED), revealing a unique interpenetrated hcb-a net topology. This unusual topology is enabled by the presence of free hydroxamate groups, which lead to the formation of a diverse network of cooperative interactions comprising single metal-hydroxamate nodes, staggered π–π interactions between linkers and H-bonding interactions between metal-coordinated and free hydroxamate groups. Such extensive, multimodal interconnectivity is reminiscent of the complex noncovalent interaction networks of proteins and endows M-HAF-2 frameworks with good thermal and exceptionally high chemical stability and allows them to readily undergo post-synthetic metal exchange (PSE). We demonstrate that M-HAF-2 can serve as versatile porous materials for ionic separations, likely aided by one-dimensional channels lined by continuously π-stacked aromatic groups and H-bonding hydroxamate functionalities. As a new addition to the small group of hydroxamate-based MOFs, M-HAF-2 represents a structural merger between MOFs and hydrogen-bonded organic frameworks (HOFs).

2002 ◽  
Vol 67 (11) ◽  
pp. 1609-1615 ◽  
Author(s):  
Hong-Bin Jia ◽  
Jie-Hui Yu ◽  
Ji-Qing Xu ◽  
Hong Ding ◽  
Wei-Jie Jing ◽  
...  

Complex [Fe(bzta)2(ox)]n (1) was synthesized from K3[Fe(ox)3]·3H2O and benzotriazole. Single-crystal X-ray diffraction study of complex 1 has established a novel structure containing several kinds of secondary bonding interactions. All these interactions make it display a three-dimensional supramolecular network.


2020 ◽  
Vol 8 (4) ◽  
pp. 1374-1379 ◽  
Author(s):  
Yutong Wang ◽  
Kai Zhang ◽  
Xiaokang Wang ◽  
Xuelian Xin ◽  
Xiurong Zhang ◽  
...  

An unprecedented three-dimensional (3D) (3,4,5)-czkf topological framework (UPC-38) with one-dimensional (1D) chain secondary building units exhibits strong white light emission.


2020 ◽  
Vol 7 (19) ◽  
pp. 3548-3554
Author(s):  
Keke Wang ◽  
Qunmin Wang ◽  
Xiong Wang ◽  
Mei Wang ◽  
Qin Wang ◽  
...  

Intramolecular hydrogen bonds in ligands restrict the rotation of carboxyl groups and consequently enhance the chemical stability of MOFs.


Author(s):  
Jun Wang ◽  
Jian-Qing Tao ◽  
Xiao-Juan Xu ◽  
Chun-Yun Tan

In the title mixed-ligand metal–organic polymeric compound, {[Cd(C14H8O6S)(C16H16N2)]·3H2O}n, the asymmetric unit contains a crystallographically unique CdIIatom, one doubly deprotonated 4,4′-sulfonyldibenzoic acid (H2SDBA) ligand, one 3,4,7,8-tetramethyl-1,10-phenanthroline (TMPHEN) molecule and three solvent water molecules. Each CdIIcentre is six-coordinated by two O atoms from a chelating carboxylate group of a SDBA2−ligand, two O atoms from monodentate carboxylate groups of two different SDBA2−ligands and two N atoms from a chelating TMPHEN ligand. There are two coordination patterns for the carboxylate groups of the SDBA2−ligand, with one in a μ1-η1:η1chelating mode and the other in a μ2-η1:η1bis-monodentate mode. Single-crystal X-ray diffraction analysis revealed that the title compound is a one-dimensional double-chain polymer containing 28-membered rings based on the [Cd2(CO2)2] rhomboid subunit. More interestingly, a chair-shaped water hexamer cluster is observed in the compound.


2008 ◽  
Vol 61 (9) ◽  
pp. 1494-1502 ◽  
Author(s):  
Kou-Lin Zhang ◽  
Fang Zhou ◽  
Hong-Yan Gao ◽  
Zi-Cai Pan ◽  
Jian-Guo Lin ◽  
...  

2012 ◽  
Vol 65 (12) ◽  
pp. 1662 ◽  
Author(s):  
Zilu Chen ◽  
Chuanbing Zhang ◽  
Xianlin Liu ◽  
Zhong Zhang ◽  
Fupei Liang

A chiral metal-organic framework formulated as [Zn3(L-TMTA)2(4,4′-bpy)4]·24H2O (1) was prepared from the reaction of Zn(NO3)2·6H2O with trimesoyltri(L-alanine) (L-TMTAH3) in the presence of 4,4′-bipyridine (4,4′-bpy). Compound 1 features linear trinuclear secondary building blocks [Zn3(syn-syn-COO)2(μ2,η3-COO)2]2+. Each linear trinuclear secondary building block is further linked to another eight ones around it by four L-TMTA3– ligands and eight 4,4′-bpy ligands, leading to the construction of a uninodal three-dimensional framework with triangular prism-like one-dimensional channels. Dehydrated compound 1 displays remarkable adsorption selectivity on CO2 and water vapour over N2 gas.


Author(s):  
Jian-Qing Tao

In the title mixed-ligand metal–organic polymeric complex [Cd(C14H8O6S)(C16H16N2)(H2O)]n, the asymmetric unit contains a crystallographically unique CdIIatom, one doubly deprotonated 4,4′-sulfonyldibenzoic acid ligand (H2SDBA), one 3,4,7,8-tetramethyl-1,10-phenanthroline (TMPHEN) molecule and one water molecule. Each CdIIcentre is coordinated by two N atoms from the chelating TMPHEN ligand, three O atoms from monodentate carboxylate groups of three different SDBA2−ligands and one O atom from a coordinated water molecule, giving a distorted CdN2O4octahedral geometry. Single-crystal X-ray diffraction analysis reveals that the compound is a one-dimensional double-chain polymer containing 28-membered rings based on Cd2O2clusters, with a Cd...Cd separation of 3.6889 (4) Å. These chains are linked by O—H...O and C—H...O hydrogen bonds to form a three-dimensional supramolecular framework. The framework is reinforced by π–π and C—O...π interactions.


Sign in / Sign up

Export Citation Format

Share Document