scholarly journals Weak nuclear spin singlet relaxation mechanisms revealed by experiment and computation

Author(s):  
Alexej Jerschow ◽  
Boris Kharkov ◽  
Xueyou Duan ◽  
Jyrki Rantaharju ◽  
Mohamed Sabba ◽  
...  

Nuclear spin singlet states are often found to allow long lived storage of nuclear magnetization, which can form the basis of novel applications in spectroscopy, imaging, and in studies of dynamic processes. Precisely how long such polarization remains intact, and which factors affect its lifetime is often difficult to determine and predict. We present a combined experimental/computational study to demonstrate that molecular dynamics simulations and ab initio calculations can be used to fully account for the experimentally observed singlet lifetimes in an organic molecule in solution. %Intermolecular interactions with Cl nuclei of the chloroform solvent are shown to contribute significantly to the relaxation. Paramagnetic relaxation due to dissolved oxygen is taken into account in a self-consistent manner. The correspondence between experiment and simulations is achieved without adjustable parameters. These studies highlight the importance of considering unusual and difficult-to-control mechanisms, such as dipolar couplings to low-gamma solvent nuclei, and to residual paramagnetic species, which often can represent lifetime limiting factors. These results also point to the power of molecular dynamics simulations to provide insights into little-known NMR relaxation mechanisms.

2019 ◽  
Author(s):  
Allison Edwards ◽  
Abdolreza Javidialesaadi ◽  
Katie Weigandt ◽  
George Stan ◽  
Charles Eads

We study molecular arrangements and dynamics in alkyl ethoxylate nonionic surfactant micelles by combining high field (600 and 700 MHz) NMR relaxation measurements with large-scale atomistic molecular dynamics simulations. For spherical micelles, but not for cylindrical micelles, cross relaxation rates are positive only for surfactant alkyl tail atoms connected to the hydrophilic head group. All cross relaxation rates are negative for cylindrical micelles. This effect is reproducible either by changing composition (ratios of the nonionic surfactants) or changing temperature of a single surfactant in order to change the micelle shape. We validate the micelle shape by SANS and use the results as a guide for our simulations. We calculate parameters that determine relaxation rates directly from simulated trajectories, without introducing specific functional forms. Results indicate that relative motions of nearby atoms are liquid-like, in agreement with 13C T1 measurements, though constrained by micelle morphology. Relative motions of distant atoms have slower components because the relative changes in distances and angles are smaller when the moving atoms are further apart. The slow, long-range motions appear to be responsible for the predominantly negative cross relaxation rates observed in NOESY spectra. The densities of atoms from positions 1 and 2 in the boundary region are lower in spherical micelles compared to cylindrical micelles. Correspondingly, motions in this region are less constrained by micelle morphology in the spherical compared to the cylindrical cases. The two effects of morphology lead to the unusual occurrence of positive cross relaxation involving positions 1 and 2 for spheres.


2021 ◽  
Vol 23 (4) ◽  
pp. 2964-2971
Author(s):  
Bernadeta Jasiok ◽  
Mirosław Chorążewski ◽  
Eugene B. Postnikov ◽  
Claude Millot

Thermophysical properties of liquid dibromomethane are investigated by molecular dynamics simulations between 268 and 328 K at pressures up to 3000 bar. Notably, the isotherms of the isobaric thermal expansivity cross around 800 bar.


2021 ◽  
pp. 118240
Author(s):  
Yanpeng Shang ◽  
Reza Balali Dehkordi ◽  
Supat Chupradit ◽  
Davood Toghraie ◽  
Andrei Sevbitov ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 699 ◽  
Author(s):  
Ma ◽  
Zhong ◽  
Liu ◽  
Zhong ◽  
Yan ◽  
...  

Density functional theory calculations and molecular dynamics simulations were performed to investigate the hydrogen storage capacity in the sII hydrate. Calculation results show that the optimum hydrogen storage capacity is ~5.6 wt%, with the double occupancy in the small cage and quintuple occupancy in the large cage. Molecular dynamics simulations indicate that these multiple occupied hydrogen hydrates can occur at mild conditions, and their stability will be further enhanced by increasing the pressure or decreasing the temperature. Our work highlights that the hydrate is a promising material for storing hydrogen.


2019 ◽  
Vol 21 (28) ◽  
pp. 15487-15503 ◽  
Author(s):  
Andrea Bonvicini ◽  
Peter Reinholdt ◽  
Vincent Tognetti ◽  
Laurent Joubert ◽  
Daniel Wüstner ◽  
...  

State-of-the-art quantum chemical and molecular dynamics simulations are used as guidelines in design of novel fluorescent analogues of cholesterol.


2020 ◽  
Vol 22 (3) ◽  
pp. 1611-1623
Author(s):  
Mattia Migliore ◽  
Andrea Bonvicini ◽  
Vincent Tognetti ◽  
Laure Guilhaudis ◽  
Marc Baaden ◽  
...  

TDDFT coupled with molecular dynamics simulations are used for β-turn characterization by ECD spectroscopy.


Author(s):  
Dilip Asthagiri ◽  
Philip M. Singer ◽  
Arjun Valiya Parambathu ◽  
Zeliang Chen ◽  
George J. Hirasaki ◽  
...  

2019 ◽  
Vol 1 (8) ◽  
pp. 2891-2900 ◽  
Author(s):  
Ning Liu ◽  
Mathew Becton ◽  
Liuyang Zhang ◽  
Keke Tang ◽  
Xianqiao Wang

Mechanical properties, especially negative Poisson's, of 2D sinusoidal lattice metamaterials based on 2D materials depends highly on both geometrical factors and tuned mechanical anisotropy according to our generic coarse-grained molecular dynamics simulations.


Author(s):  
Allison Edwards ◽  
Abdolreza Javidialesaadi ◽  
Katie Weigandt ◽  
George Stan ◽  
Charles Eads

We study molecular arrangements and dynamics in alkyl ethoxylate nonionic surfactant micelles by combining high field (600 and 700 MHz) NMR relaxation measurements with large-scale atomistic molecular dynamics simulations. For spherical micelles, but not for cylindrical micelles, cross relaxation rates are positive only for surfactant alkyl tail atoms connected to the hydrophilic head group. All cross relaxation rates are negative for cylindrical micelles. This effect is reproducible either by changing composition (ratios of the nonionic surfactants) or changing temperature of a single surfactant in order to change the micelle shape. We validate the micelle shape by SANS and use the results as a guide for our simulations. We calculate parameters that determine relaxation rates directly from simulated trajectories, without introducing specific functional forms. Results indicate that relative motions of nearby atoms are liquid-like, in agreement with 13C T1 measurements, though constrained by micelle morphology. Relative motions of distant atoms have slower components because the relative changes in distances and angles are smaller when the moving atoms are further apart. The slow, long-range motions appear to be responsible for the predominantly negative cross relaxation rates observed in NOESY spectra. The densities of atoms from positions 1 and 2 in the boundary region are lower in spherical micelles compared to cylindrical micelles. Correspondingly, motions in this region are less constrained by micelle morphology in the spherical compared to the cylindrical cases. The two effects of morphology lead to the unusual occurrence of positive cross relaxation involving positions 1 and 2 for spheres.


2002 ◽  
Vol 23 (16) ◽  
pp. 1577-1586 ◽  
Author(s):  
Philippe Barthe ◽  
Christian Roumestand ◽  
Hélène Déméné ◽  
Laurent Chiche

Sign in / Sign up

Export Citation Format

Share Document