Superhydrophilicity of $\alpha$-Alumina Surfaces Results from Tight Binding of Interfacial Waters to Specific Aluminols

Author(s):  
Ruiyu Wang ◽  
Richard C. Remsing ◽  
Michael L. Klein ◽  
Vincenzo Carnevale ◽  
Eric Borguet

Understanding the microscopic driving force of water wetting is challenging and important for design of materials. In this work, we investigate, using classical molecular dynamics simulations, the water/$\alpha$-alumina (0001) and ($11\overline{2}0$) interfaces chosen for their chemical and physical differences. There is only one type of aluminol group on the nominally flat (0001) surface but three types on the microscopically rougher ($11\overline{2}0$) surface. We find that both surfaces are completely wet, consistent with contact angles of zero. Moreover, the work required to remove water from a nanoscale volume at the interface is larger for the (0001) surface than the ($11\overline{2}0$) surface, suggesting that the (0001) surface is more hydrophilic. In addition, translational and rotational dynamics of interfacial water molecules are slower than that in bulk water, suggesting tight binding to the surface. Interfacial waters show two major polar orientations, either pointing to or away from the solid surface. In the former case, waters donate strong hydrogen bonds to the surface, while in the latter they accept relatively weak ones from aluminol groups. The strength of hydrogen bonds is estimated using their lifetime and geometry. We found that for all aluminols, water-to-aluminol hydrogen bonds are stronger and have longer lifetimes than the aluminol-to-water ones. One exception is the long lifetime of the \ce{Al3OH}-water hydrogen bonds on the ($11\overline{2}0$) surface, due to geometric constraints. Interactions between surfaces and interfacial waters promote a templating effect whereby the latter are aligned in a pattern that follows the underlying lattice of the mineral surface.

Author(s):  
Adrian Dominguez-Castro ◽  
Thomas Frauenheim

Theoretical calculations are an effective strategy to comple- ment and understand experimental results in atomistic detail. Ehrenfest molecular dynamics simulations based on the real-time time-dependent density functional tight-binding (RT-TDDFTB) approach...


2013 ◽  
Vol 12 (08) ◽  
pp. 1341002 ◽  
Author(s):  
XIN ZHANG ◽  
MING LEI

The deamination process of isoxanthopterin catalyzed by isoxanthopterin deaminase was determined using the combined QM(PM3)/MM molecular dynamics simulations. In this paper, the updated PM3 parameters were employed for zinc ions and the initial model was built up based on the crystal structure. Proton transfer and following steps have been investigated in two paths: Asp336 and His285 serve as the proton shuttle, respectively. Our simulations showed that His285 is more effective than Aap336 in proton transfer for deamination of isoxanthopterin. As hydrogen bonds between the substrate and surrounding residues play a key role in nucleophilic attack, we suggested mutating Thr195 to glutamic acid, which could enhance the hydrogen bonds and help isoxanthopterin get close to the active site. The simulations which change the substrate to pterin 6-carboxylate also performed for comparison. Our results provide reference for understanding of the mechanism of deaminase and for enhancing the deamination rate of isoxanthopterin deaminase.


2014 ◽  
Vol 16 (42) ◽  
pp. 23026-23037 ◽  
Author(s):  
Piotr Durlak ◽  
Zdzisław Latajka

The dynamics of the intramolecular short hydrogen bond in the molecular crystal of benzoylacetone and its deuterated analogue are investigated using ab initio molecular dynamics simulations.


1995 ◽  
Vol 396 ◽  
Author(s):  
M. tang ◽  
L. colombo ◽  
T. Diaz De La Rubia

AbstractTight-binding molecular dynamics (TBMD) simulations are performed (i) to evaluate the formation and binding energies of point defects and defect clusters, (ii) to compute the diffusivity of self-interstitial and vacancy in crystalline silicon, and (iii) to characterize the diffusion path and mechanism at the atomistic level. In addition, the interaction between individual defects and their clustering is investigated.


2019 ◽  
Vol 97 (11) ◽  
pp. 795-804 ◽  
Author(s):  
Dong Xiang ◽  
Weihua Zhu

The density functional tight-binding molecular dynamics approach was used to study the mechanisms and kinetics of initial pyrolysis and combustion reactions of isolated and multi-molecular FOX-7. Based on the thermal cleavage of bridge bonds, the pyrolysis process of FOX-7 can be divided into three stages. However, the combustion process can be divided into five decomposition stages, which is much more complex than the pyrolysis reactions. The vibrations in the mean temperature contain nodes signifying the formation of new products and thereby the transitions between the various stages in the pyrolysis and combustion processes. Activation energy and pre-exponential factor for the pyrolysis and combustion reactions of FOX-7 were obtained from the kinetic analysis. It is found that the activation energy of its pyrolysis and combustion reactions are very low, making both take place fast. Our simulations provide the first atomic-level look at the full dynamics of the complicated pyrolysis and combustion process of FOX-7.


2013 ◽  
Vol 9 ◽  
pp. 118-134 ◽  
Author(s):  
Jutta Erika Helga Köhler ◽  
Nicole Grczelschak-Mick

Four highly ordered hydrogen-bonded models of β-cyclodextrin (β-CD) and its inclusion complex with benzene were investigated by three different theoretical methods: classical quantum mechanics (QM) on AM1 and on the BP/TZVP-DISP3 level of approximation, and thirdly by classical molecular dynamics simulations (MD) at different temperatures (120 K and 273 to 300 K). The hydrogen bonds at the larger O2/O3 rim of empty β-CDs prefer the right-hand orientation, e.g., O3-H…O2-H in the same glucose unit and bifurcated towards …O4 and O3 of the next glucose unit on the right side. On AM1 level the complex energy was −2.75 kcal mol−1 when the benzene molecule was located parallel inside the β-CD cavity and −2.46 kcal mol−1 when it was positioned vertically. The AM1 HOMO/LUMO gap of the empty β-CD with about 12 eV is lowered to about 10 eV in the complex, in agreement with data from the literature. AM1 IR spectra displayed a splitting of the O–H frequencies of cyclodextrin upon complex formation. At the BP/TZVP-DISP3 level the parallel and vertical positions from the starting structures converged to a structure where benzene assumes a more oblique position (−20.16 kcal mol−1 and −20.22 kcal mol−1, resp.) as was reported in the literature. The character of the COSMO-RS σ-surface of β-CD was much more hydrophobic on its O6 rim than on its O2/O3 side when all hydrogen bonds were arranged in a concerted mode. This static QM picture of the β-CD/benzene complex at 0 K was extended by MD simulations. At 120 K benzene was mobile but always stayed inside the cavity of β-CD. The trajectories at 273, 280, 290 and 300 K certainly no longer displayed the highly ordered hydrogen bonds of β-CD and benzene occupied many different positions inside the cavity, before it left the β-CD finally at its O2/O3 side.


2021 ◽  
Author(s):  
Cecylia Severin Lupala ◽  
Yongjin Ye ◽  
Hong Chen ◽  
Xiaodong Su ◽  
Haiguang Liu

The spreading of SARS-CoV-2 virus resulted the COVID-19 pandemic, which has caused more than 5 millions of death globally. Several major variants of SARS-CoV-2 have emerged and placed challenges in controlling the infections. The recently emerged Omicron variant raised serious concerns about reducing efficacy of antibodies or vaccines, due to its vast mutations. We modelled the complex structure of human ACE2 protein and the receptor binding domain of Omicron variant, then conducted atomistic molecular dynamics simulations to study the binding interactions. The analysis shows that the Omicron variant RBD binds more strongly to the human ACE2 protein than the original strain. The mutation at the ACE2-RBD interface enhanced the tight binding by increasing hydrogen bonding interaction and enlarging buried solvent accessible surface area.


2021 ◽  
Author(s):  
Sayan Maity ◽  
Vangelis Daskalakis ◽  
Marcus Elstner ◽  
Ulrich Kleinekathöfer

Photosynthetic processes are driven by sunlight. Too little of it and the photosynthetic machinery cannot produce the reductive power to drive the anabolic pathways. Too much sunlight and the machinery can get damaged. In higher plants, the major Light Harvesting Complex (LHCII) efficiently absorbs the light energy, but can also dissipate it when in excess (quenching). In order to study the dynamics related to the quenching process but also the exciton dynamics in general, one needs to accurately determine the so-called spectral density which describes the coupling between the relevant pigment modes and the environmental degrees of freedom. To this end, Born–Oppenheimer molecular dynamics simulations in a quantum mechanics/molecular mechanics (QM/MM) fashion utilizing the density functional based tight binding (DFTB) method have been performed for the ground state dynamics. Subsequently, the time-dependent extension of the long-range-corrected DFTB scheme has been employed for the excited state calculations of the individual chlorophyll-a molecules in the LHCII complex. The analysis of this data resulted in spectral densities showing an astonishing agreement with the experimental counterpart in this rather large system. This consistency with an experimental observable also supports the accuracy, robustness, and reliability of the present multi-scale scheme. In addition, the resulting spectral densities and site energies were used to determine the exciton transfer rate within a special pigment pair consisting of a chlorophyll-a and a carotenoid molecule which is assumed to play a role in the balance between the light harvesting and quenching modes.


Sign in / Sign up

Export Citation Format

Share Document