scholarly journals Microwave-assisted radiolabelling of 52Mn-porphyrins

Author(s):  
Peter J. Gawne ◽  
Sara M. A. Pinto ◽  
Karin M. Nielsen ◽  
Mariette M. Pereira ◽  
Rafael T. M. de Rosales

Manganese porphyrins have several therapeutic/imaging applications; including their use as radioprotectants (in clinical trials), and as paramagnetic MRI contrast agents. The affinity of porphyrins for lipid bilayers also makes them candidates for cell/liposome labelling. We hypothesised that metalation with the positron emission tomography (PET) radionuclide 52Mn (t1/2 = 5.6 d) would allow long-term in vivo biodistribution studies of Mn-porphyrins as well as a method to label and track cells/liposomes, but methods for fast and efficient radiolabelling are lacking. Several porphyrins were produced and radiolabelled by addition to neutralised [52Mn]MnCl2 and heated at 165 oC for 1 h using a microwave (MW) synthesiser at a ligand concentration of 0.6 – 0.7 mM. These conditions were compared with non-MW heating at 70oC. MW radiosynthesis allowed >95 % radiochemical yields (RCY) in just 1 h. Conversely, non-MW heating at 70 oC for 1 h resulted in low RCY (0 – 25 % RCY) and most porphyrins did not reach completion after 24h. Formation of the 52Mn-complexes were confirmed with radio-HPLC by comparison with their non-radioactive 55Mn counterparts. Following this, several 52Mn-porphyrins were used to radiolabel liposomes by incubation at 50 oC for 30 min resulting in 75 – 86 % labelling efficiency (LE). Two lead 52Mn-porphyrins were taken forward to label MDA-MB-231 cancer cells in vitro, achieving ca. 11 % LE. After 24 h, 32 – 45 % of the 52Mn-porphyrin was retained in cells. In contrast to standard methods, MW heating allows fast synthesis of 52Mn-porphyrins with >95% radiochemical yields that avoid purification. 52Mn-porphyrins also show promising cell/liposome labelling properties. This technique can potentially be exploited for the in vivo imaging of Mn-porphyrin therapeutics, as well as for the accurate in vivo quantification of Mn-porphyrin MRI agents.

Author(s):  
Naresh Damuka ◽  
Miranda Orr ◽  
Paul W. Czoty ◽  
Jeffrey L. Weiner ◽  
Thomas J. Martin ◽  
...  

AbstractMicrotubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.


2021 ◽  
Vol 11 (3) ◽  
pp. 1165
Author(s):  
Wen-Tien Hsiao ◽  
Yi-Hong Chou ◽  
Jhong-Wei Tu ◽  
Ai-Yih Wang ◽  
Lu-Han Lai

The purpose of this study is to establish the minimal injection doses of magnetic resonance imaging (MRI) contrast agents that can achieve optimized images while improving the safety of injectable MRI drugs. Gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) and ferucarbotran, commonly used in clinical practice, were selected and evaluated with in vitro and in vivo experiments. MRI was acquired using T1-weighted (T1W) and T2-weighted (T2W) sequences, and the results were quantitatively analyzed. For in vitro experiments, results showed that T1W and T2W images were optimal when Gd-DTPA-bisamide (2-oxoethyl) (Gd-DTPA-BMEA) and ferucarbotran were diluted to a volume percentage of 0.6% and 0.05%; all comparisons were significant differences in grayscale statistics using one-way analysis of variance (ANOVA). For in vivo experiments, the contrast agent with optimal concentration percentages determined from in vitro experiments were injected into mice with an injection volume of 100 μL, and the images of brain, heart, liver, and mesentery before and after injection were compared. The statistical results showed that the p values of both T1W and T2W were less than 0.001, which were statistically significant. Under safety considerations for MRI contrast agent injection, optimized MRI images could still be obtained after reducing the injection concentration, which can provide a reference for the safety concentrations of MRI contrast agent injection in the future.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1097
Author(s):  
Andras Polyak ◽  
Jens P. Bankstahl ◽  
Karen F. W. Besecke ◽  
Constantin Hozsa ◽  
Wiebke Triebert ◽  
...  

In this work, a method for the preparation of the highly lipophilic labeling synthon [89Zr]Zr(oxinate)4 was optimized for the radiolabeling of liposomes and human induced pluripotent stem cells (hiPSCs). The aim was to establish a robust and reliable labeling protocol for enabling up to one week positron emission tomography (PET) tracing of lipid-based nanomedicines and transplanted or injected cells, respectively. [89Zr]Zr(oxinate)4 was prepared from oxine (8-hydroxyquinoline) and [89Zr]Zr(OH)2(C2O4). Earlier introduced liquid–liquid extraction methods were simplified by the optimization of buffering, pH, temperature and reaction times. For quality control, thin-layer chromatography (TLC), size-exclusion chromatography (SEC) and centrifugation were employed. Subsequently, the 89Zr-complex was incorporated into liposome formulations. PET/CT imaging of 89Zr-labeled liposomes was performed in healthy mice. Cell labeling was accomplished in PBS using suspensions of 3 × 106 hiPSCs, each. [89Zr]Zr(oxinate)4 was synthesized in very high radiochemical yields of 98.7% (96.8% ± 2.8%). Similarly, high internalization rates (≥90%) of [89Zr]Zr(oxinate)4 into liposomes were obtained over an 18 h incubation period. MicroPET and biodistribution studies confirmed the labeled nanocarriers’ in vivo stability. Human iPSCs incorporated the labeling agent within 30 min with ~50% efficiency. Prolonged PET imaging is an ideal tool in the development of lipid-based nanocarriers for drug delivery and cell therapies. To this end, a reliable and reproducible 89Zr radiolabeling method was developed and tested successfully in a model liposome system and in hiPSCs alike.


2019 ◽  
Vol 12 (4) ◽  
pp. 166 ◽  
Author(s):  
Lauren L. Radford ◽  
Solana Fernandez ◽  
Rebecca Beacham ◽  
Retta El Sayed ◽  
Renata Farkas ◽  
...  

Overexpression of folate receptors (FRs) on different tumor types (e.g., ovarian, lung) make FRs attractive in vivo targets for directed diagnostic/therapeutic agents. Currently, no diagnostic agent suitable for positron emission tomography (PET) has been adopted for clinical FR imaging. In this work, two 55Co-labeled albumin-binding folate derivatives-[55Co]Co-cm10 and [55Co]Co-rf42-with characteristics suitable for PET imaging have been developed and evaluated. High radiochemical yields (≥95%) and in vitro stabilities (≥93%) were achieved for both compounds, and cell assays demonstrated FR-mediated uptake. Both 55Co-labeled folate conjugates demonstrated high tumor uptake of 17% injected activity per gram of tissue (IA/g) at 4 h in biodistribution studies performed in KB tumor-bearing mice. Renal uptake was similar to other albumin-binding folate derivatives, and liver uptake was lower than that of previously reported [64Cu]Cu-rf42. Small animal PET/CT images confirmed the biodistribution results and showed the clear delineation of FR-expressing tumors.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3924
Author(s):  
Falguni Basuli ◽  
Xiang Zhang ◽  
Tim E. Phelps ◽  
Elaine M. Jagoda ◽  
Peter L. Choyke ◽  
...  

The C-X-C motif chemokine receptor 4 (CXCR4) is a seven-transmembrane G protein-coupled receptor that is overexpressed in numerous diseases, particularly in various cancers and is a powerful chemokine, attracting cells to the bone marrow niche. Therefore, CXCR4 is an attractive target for imaging and therapeutic purposes. The goal of this study is to develop an efficient, reproducible, and straightforward method to prepare a fluorine-18 labeled CXCR4 ligand. 6-[18F]Fluoronicotinic acid-2,3,5,6-tetrafluorophenyl ester (6-[18F]FPy-TFP) and nicotinic acid N-hydroxysuccinimide ester (6-[18F]SFPy) have been prepared using ‘fluorination on the Sep-Pak’ method. Conjugation of 6-[18F]SFPy or 6-[18F]FPy-TFP with the alpha-amino group at the N terminus of the protected T140 precursor followed by deprotection, yielded the final product 6-[18F]FPy-T140. The overall radiochemical yields were 6–17% (n = 15, decay-corrected) in a 90-min radiolabeling time with a radiochemical purity >99%. 6-[18F]FPy-T140 exhibited high specific binding and nanomolar affinity for CXCR4 in vitro, indicating that the biological activity of the peptide was preserved. For the first time, [18F]SFPy has been prepared using ‘fluorination on the Sep-Pak’ method that allows rapid automated synthesis of 6-[18F]FPy-T140. In addition to increased synthetic efficiency, this construct binds with CXCR4 in high affinity and may have potential as an in vivo positron emission tomography (PET) imaging agent. This radiosynthesis method should encourage wider use of this PET agent to quantify CXCR4 in both research and clinical settings.


2020 ◽  
Author(s):  
Federica Guarra ◽  
Alessio Terenzi ◽  
Christine Pirker ◽  
Rossana Passannante ◽  
Dina Baier ◽  
...  

Au(III) complexes with N-Heterocyclic Carbenes (NHCs) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Herein we report on the synthesis of new Au(III)-NHC complexes via direct oxidation with radioactive [124I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET) and, in combination with in vitro analyses, to provide direct evidence of the importance of Au(III)-to-Au(I) reduction for achieving full anticancer activity.


Sensors ◽  
2015 ◽  
Vol 15 (12) ◽  
pp. 31973-31986 ◽  
Author(s):  
Yuka Miyake ◽  
Syungo Ishikawa ◽  
Yu Kimura ◽  
Aoi Son ◽  
Hirohiko Imai ◽  
...  

2020 ◽  
Author(s):  
Federica Guarra ◽  
Alessio Terenzi ◽  
Christine Pirker ◽  
Rossana Passannante ◽  
Dina Baier ◽  
...  

Au(III) complexes with N-Heterocyclic Carbenes (NHCs) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Herein we report on the synthesis of new Au(III)-NHC complexes via direct oxidation with radioactive [124I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET) and, in combination with in vitro analyses, to provide direct evidence of the importance of Au(III)-to-Au(I) reduction for achieving full anticancer activity.


Inorganics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 60 ◽  
Author(s):  
Silvia Alonso-de Castro ◽  
Emmanuel Ruggiero ◽  
Aitor Lekuona Fernández ◽  
Unai Cossío ◽  
Zuriñe Baz ◽  
...  

Lanthanide-doped upconverting nanoparticles (UCNPs) transform near infrared light (NIR) into higher-energy UV and visible light by multiphotonic processes. Owing to such unique feature, UCNPs have found application in optical imaging and have been investigated for the NIR light activation of prodrugs, including transition metal complexes of interest in photochemotherapy. Besides, UCNPs also function as magnetic resonance imaging (MRI) contrast agents and positron emission tomography (PET) probes when labelled with radionuclides such as 18F. In this contribution, we report on a new series of phosphonate-functionalized NaGdF4:Yb,Er UCNPs that show affinity for hydroxyapatite (inorganic constituent of bones), and we discuss their potential as bone targeting multimodal (MRI/PET) imaging agents. In vivo biodistribution studies of 18F-labelled NaGdF4:Yb,Er UCNPs in rats indicate that surface functionalization with phosphonates favours the accumulation of nanoparticles in bones over time. PET results reveal leakage of 18F− for phosphonate-functionalized NaGdF4:Yb,Er and control nanomaterials. However, Gd was detected in the femur for phosphonate-capped UCNPs by ex vivo analysis using ICP-MS, corresponding to 6–7% of the injected dose.


2010 ◽  
Vol 49 (03) ◽  
pp. 97-105 ◽  
Author(s):  
S. M. Börner ◽  
T. Fischer ◽  
H. Hansen ◽  
R. Schnell ◽  
B. Zimmermanns ◽  
...  

Summary Objectives: Comparison of the binding affinity to a CD30-positive Hodgkin lymphoma (HL) cell line and biodistribution in HL bearing mice of new anti-CD30 radioimmunoconjugates (RICs) of varying structure and labelling nuclides. Methods: The antibodies Ki-4 and 5F11 were radioiodinated by the chloramine T method or labelled with 111In via p-NCSBenzyl- DOTA. In addition, the Ki-4-dimer was investigated in the iodinated form. The RICs were analyzed for retained immunoreactivity by immunochromatography. In-vitro binding studies were performed on CD30-positive L540 cell lines. For in-vivo biodistribution studies, SCID mice bearing human HL xenografts were injected with the various radioimmunoconjugates. After 24 h, activities in the organs and tumour were measured for all 5 RICs. Tumour-free animals were studied in the same way with 131I- Ki-4 24 h p. i. The three RICs with the highest tumour/background ratios 24 h p.i. (131I-Ki-4, 131I–5F11, 111In-bz- DOTA-Ki-4) were analysed further at 48 h and 72 h. Results: All the RICs were successfully labelled with high specific activities (28–47 TBq/ mmol) and sufficient radiochemical yields (> 80%). Scatchard plot analysis proved high tumour affinity (KD = 20–220 nmol/l). In-vivo tumour accumulation in % of injected dose per g tissue (%ID/g) lay between 2.6 (131I-5F11) and 12.3 % ID/g (131I-Ki-4) with permanently high background in blood. Tumour/blood-ratios of all RICs were below one at all time points. Conclusions: In-vitro tumour cell affinities of all RICs were promising. However, in-vivo biokinetics tested in the mouse model did not meet expectations. This highlights the importance of developing and testing further new anti-CD30 conjugates.


Sign in / Sign up

Export Citation Format

Share Document