scholarly journals Molecular Weight Distribution of Kerogen with MALDI-TOF-MS

Author(s):  
Hyeonseok Lee ◽  
Mohammadreza Shokouhimehr ◽  
Mehdi Ostadhassan ◽  
Bo Liu ◽  
Arash Abarghani

<p>Kerogen is an amorphous organic matter (AOM) in fine grain sediments, which produces petroleum and other byproducts when subjected to adequate pressure and temperature (deep burial conditions). Chemical characteristics of kerogen by considering its biogenic origin, depositional environment, and thermal maturity has been studied extensively with different analytical methods, though its molecular structure is still not fully known. In this study, conventional geochemical methods were used to screen bulk rock aliquots from the Bakken Shale with varying thermal maturities. Organic matter was isolated from the mineral matrix and then a mass spectrometry method was utilized to quantify molecular weight distribution (MWD) of four different kerogens at various thermal maturity levels (immature to late mature). Furthermore, to complement mass spectrometry, Fourier transform infrared (FTIR) spectroscopy was employed as a qualitative chemical and structural investigation technique. The MWD of four samples was obtained by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, and the results are correlated with the absorption indices (CH<sub>3</sub>/CH<sub>2</sub> ratio and aromaticity) calculated from the FTIR attenuated total reflectance (ATR) method. The results showed when the degree of maturity increases, the aliphatic length shortens, and the branching develops, as well as the aromatic structure becomes more abundant. Moreover, based on the MWD results, higher maturity kerogen samples would consist of larger size molecular structures, which are recognized as more developed aromatic, and aliphatic branching stretches. The combination of infrared spectroscopy (AFT-FTIR) and mass spectrometry (MALDI-TOF) provided MWD variations in kerogen samples as a function of maturity based on varying absorption indices and revealed the rate of change in molecular mass populations as a function of thermal maturity.</p>

2019 ◽  
Author(s):  
Hyeonseok Lee ◽  
Mohammadreza Shokouhimehr ◽  
Mehdi Ostadhassan

<p>Kerogen is an amorphous organic matter (AOM) in fine grain sediments, which produces petroleum and other byproducts when subjected to adequate pressure and temperature (deep burial conditions). Chemical characteristics of kerogen by considering its biogenic origin, depositional environment, and thermal maturity has been studied extensively with different analytical methods, though its molecular structure is still not fully known. In this study, conventional geochemical methods were used to screen bulk rock aliquots from the Bakken Shale with varying thermal maturities. Organic matter was isolated from the mineral matrix and then a mass spectrometry method was utilized to quantify molecular weight distribution (MWD) of four different kerogens at various thermal maturity levels (immature to late mature). Furthermore, to complement mass spectrometry, Fourier transform infrared (FTIR) spectroscopy was employed as a qualitative chemical and structural investigation technique. The MWD of four samples was obtained by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, and the results are correlated with the absorption indices (CH<sub>3</sub>/CH<sub>2</sub> ratio and aromaticity) calculated from the FTIR attenuated total reflectance (ATR) method. The results showed when the degree of maturity increases, the aliphatic length shortens, and the branching develops, as well as the aromatic structure becomes more abundant. Moreover, based on the MWD results, higher maturity kerogen samples would consist of larger size molecular structures, which are recognized as more developed aromatic, and aliphatic branching stretches. The combination of infrared spectroscopy (AFT-FTIR) and mass spectrometry (MALDI-TOF) provided MWD variations in kerogen samples as a function of maturity based on varying absorption indices and revealed the rate of change in molecular mass populations as a function of thermal maturity.</p>


2020 ◽  
Author(s):  
Hyeonseok Lee ◽  
Mohammadreza Shokouhimehr ◽  
Mehdi Ostadhassan ◽  
Bo Liu ◽  
Arash Abarghani

<p>Kerogen is an amorphous organic matter (AOM) in fine grain sediments, which produces petroleum and other byproducts when subjected to adequate pressure and temperature (deep burial conditions). Chemical characteristics of kerogen by considering its biogenic origin, depositional environment, and thermal maturity has been studied extensively with different analytical methods, though its molecular structure is still not fully known. In this study, conventional geochemical methods were used to screen bulk rock aliquots from the Bakken Shale with varying thermal maturities. Organic matter was isolated from the mineral matrix and then a mass spectrometry method was utilized to quantify molecular weight distribution (MWD) of four different kerogens at various thermal maturity levels (immature to late mature). Furthermore, to complement mass spectrometry, Fourier transform infrared (FTIR) spectroscopy was employed as a qualitative chemical and structural investigation technique. The MWD of four samples was obtained by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, and the results are correlated with the absorption indices (CH<sub>3</sub>/CH<sub>2</sub> ratio and aromaticity) calculated from the FTIR attenuated total reflectance (ATR) method. The results showed when the degree of maturity increases, the aliphatic length shortens, and the branching develops, as well as the aromatic structure becomes more abundant. Moreover, based on the MWD results, higher maturity kerogen samples would consist of larger size molecular structures, which are recognized as more developed aromatic, and aliphatic branching stretches. The combination of infrared spectroscopy (AFT-FTIR) and mass spectrometry (MALDI-TOF) provided MWD variations in kerogen samples as a function of maturity based on varying absorption indices and revealed the rate of change in molecular mass populations as a function of thermal maturity.</p>


2003 ◽  
Vol 22 (1) ◽  
pp. 23-42 ◽  
Author(s):  
Wu Suen ◽  
Jennifer Percy ◽  
Shaw L. Hsu ◽  
Igor A. Kaltashov ◽  
Howard D. Stidham

Matrix Assisted Laser Desorption Ionization Time-of-Flight mass spectrometry has been applied to obtain the molecular weight distribution of two polyether copolymers containing ethylene oxide and propylene oxide units. The measured molecular weights and their distributions were surprisingly different from the expected. Based upon the natural isotopic abundance, it was possible to provide a quantitative description of the number of ethylene oxide and propylene oxide units as a function of molecular weight. Important information on composition drift and heterogeneity can be obtained from the 3-D bivariate deconvolution of the mass spectra. As the molecular weight of a random copolymer increased, the ethylene oxide content also increased. A copolymer system with a narrow molecular weight distribution did not necessarily have a narrow composition distribution. These results provide information at the molecular level regarding the hydrophilicity of these copolymers used in polyurethane formulations.


Sign in / Sign up

Export Citation Format

Share Document