scholarly journals Ultrapermeable Thin Film Composite Membranes Enhanced via Doping MOF Nanosheets

Author(s):  
Min Liu ◽  
Ke Xie ◽  
MITCHELL NOTHLING ◽  
Lianhai Zu ◽  
qiang fu ◽  
...  

Thin film composite (TFC) membranes have attracted increasing interest to meet the demands of industrial gas separation. However, the development of high performance TFC membranes within their current configuration faces two key challenges: (i) the thickness-dependent gas permeability of polymeric materials (mainly polydimethylsiloxane (PDMS)) and (ii) the geometric restriction effect due to the limited pore accessibility of porous substrates. Here we demonstrate for the first time that the incorporation of trace (~1.8 wt%) amounts of amorphous metal-organic framework (aMOF) nanosheets into the gutter layer of TFC assemblies can simultaneously address these two limitations, with experimental evidence revealing the creation of rapid gas diffusion pathways along horizontal direction. Leveraging this strategy, we successfully fabricated a novel TFC membrane, consisting of a PDMS/aMOF gutter and an ultrathin (~54 nm) poly(ethylene glycol) top selective layer<i> via</i> surface-initiated atom transfer radical polymerization (ATRP). The complete TFC membrane exhibits excellent processability and the highest CO<sub>2</sub> permeance (1,990 GPU with a CO<sub>2</sub>/N<sub>2</sub> ideal selectivity of 39) yet observed for a TFC membrane employing a PDMS gutter layer. This study reveals an avenue for the design and fabrication of a new TFC membrane system with unprecedented gas separation performance.

2020 ◽  
Author(s):  
Min Liu ◽  
Ke Xie ◽  
MITCHELL NOTHLING ◽  
Lianhai Zu ◽  
qiang fu ◽  
...  

Thin film composite (TFC) membranes have attracted increasing interest to meet the demands of industrial gas separation. However, the development of high performance TFC membranes within their current configuration faces two key challenges: (i) the thickness-dependent gas permeability of polymeric materials (mainly polydimethylsiloxane (PDMS)) and (ii) the geometric restriction effect due to the limited pore accessibility of porous substrates. Here we demonstrate for the first time that the incorporation of trace (~1.8 wt%) amounts of amorphous metal-organic framework (aMOF) nanosheets into the gutter layer of TFC assemblies can simultaneously address these two limitations, with experimental evidence revealing the creation of rapid gas diffusion pathways along horizontal direction. Leveraging this strategy, we successfully fabricated a novel TFC membrane, consisting of a PDMS/aMOF gutter and an ultrathin (~54 nm) poly(ethylene glycol) top selective layer<i> via</i> surface-initiated atom transfer radical polymerization (ATRP). The complete TFC membrane exhibits excellent processability and the highest CO<sub>2</sub> permeance (1,990 GPU with a CO<sub>2</sub>/N<sub>2</sub> ideal selectivity of 39) yet observed for a TFC membrane employing a PDMS gutter layer. This study reveals an avenue for the design and fabrication of a new TFC membrane system with unprecedented gas separation performance.


2021 ◽  
Vol 57 (27) ◽  
pp. 3391-3394
Author(s):  
Abdalrahman U. Alrayyes ◽  
Ze-Xian Low ◽  
Huanting Wang ◽  
Kei Saito

This communication reports the use of light to reversibly constrict or ease the flow of oxygen through a very thin polymer coating. This is achievable by reversibly changing the polymer structure from a dense and rigid film to a loose and soft film.


2016 ◽  
Vol 55 (30) ◽  
pp. 8364-8372 ◽  
Author(s):  
Joel M. P. Scofield ◽  
Paul A. Gurr ◽  
Jinguk Kim ◽  
Qiang Fu ◽  
Sandra E. Kentish ◽  
...  

2019 ◽  
Vol 816 ◽  
pp. 167-173 ◽  
Author(s):  
Maya N. Putintseva ◽  
Ilya L. Borisov ◽  
Alexey A. Yushkin ◽  
R.A. Kirk ◽  
P.M. Budd ◽  
...  

In this work, PIM-1 thin film composite membranes supported on PAN were developed. The influence of PIM-1 concentration and nature of solvent stabilizer on the structure and gas separation properties of TFC membranes were studied. It was shown that amylene stabilized chloroform as PIM-1 solvent allows membranes to be obtained with a uniform selective layer in the whole range of concentrations used, and the ethanol stabilized chloroform provides a uniform layer at 2 and 4 wt % PIM-1 concentration. The best CO2/N2 selectivities were 35,9 and 39,5 for 4 % wt PIM-1 solution in ethanol and amylene stabilized chloroform, respectively.


RSC Advances ◽  
2015 ◽  
Vol 5 (96) ◽  
pp. 78950-78957 ◽  
Author(s):  
Pravin G. Ingole ◽  
Won Kil Choi ◽  
Il-Hyun Baek ◽  
Hyung Keun Lee

In the present study, thin film composite membranes have been prepared using an interfacial polymerization method.


Membranes ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 70 ◽  
Author(s):  
Ralph Gonzales ◽  
Myoung Park ◽  
Leonard Tijing ◽  
Dong Han ◽  
Sherub Phuntsho ◽  
...  

Electrospun nanofiber-supported thin film composite membranes are among the most promising membranes for seawater desalination via forward osmosis. In this study, a high-performance electrospun polyvinylidenefluoride (PVDF) nanofiber-supported thin film composite (TFC) membrane was successfully fabricated after molecular layer-by-layer polyelectrolyte deposition. Negatively-charged electrospun polyacrylic acid (PAA) nanofibers were deposited on electrospun PVDF nanofibers to form a support layer consisted of PVDF and PAA nanofibers. This resulted to a more hydrophilic support compared to the plain PVDF nanofiber support. The PVDF-PAA nanofiber support then underwent a layer-by-layer deposition of polyethylenimine (PEI) and PAA to form a polyelectrolyte layer on the nanofiber surface prior to interfacial polymerization, which forms the selective polyamide layer of TFC membranes. The resultant PVDF-LbL TFC membrane exhibited enhanced hydrophilicity and porosity, without sacrificing mechanical strength. As a result, it showed high pure water permeability and low structural parameter values of 4.12 L m−2 h−1 bar−1 and 221 µm, respectively, significantly better compared to commercial FO membrane. Layer-by-layer deposition of polyelectrolyte is therefore a useful and practical modification method for fabrication of high performance nanofiber-supported TFC membrane.


2019 ◽  
Vol 137 (28) ◽  
pp. 48860 ◽  
Author(s):  
Hamid Reza Afshoun ◽  
Mahdi Pourafshari Chenar ◽  
Mohammad Reza Moradi ◽  
Ahmad Fauzi Ismail ◽  
Takeshi Matsuura

Sign in / Sign up

Export Citation Format

Share Document