scholarly journals An Intelligent AIEgen with Nonmonotonic Multi-Responses to Multi-Stimuli

Author(s):  
Yujie Tu ◽  
Yeqing Yu ◽  
Diwen Xiao ◽  
Junkai Liu ◽  
zheng zhao ◽  
...  

<p>Intelligent stimulus-response (S/R) systems are the basis of natural process and machine control, and have been intensively explored in biomimetic design, analytical chemistry and biological applications. However, nonmonotonic multi-S/R systems are still rarely studied so far. Now, we propose a rational design strategy to achieve such a unique S/R system by integrating opposite luminescence behaviors in one molecule. When solvent polarity increases, many heterocycles often become more emissive due to the suppression of the proximity effect. However, molecules with donor-acceptor (D-A) structures tend to be less emissive because of the twisted intramolecular charge transfer. Meanwhile, protonation on D/A moieties will weaken/strengthen the D-A interaction to result in blue/red-shifted emissions. By combining a protonatable heterocyclic acceptor and a protonatable donor together in one molecule, we can easily achieve nonmonotonic brightness responses to polarity stimuli and nonmonotonic color responses to pH stimuli. In this work, a simple molecule, namely ASQ is chosen as the model compound to verify the design strategy feasibility. It successfully shows two opposite trends of responses to polarity and pH stimuli, and aggregation-induced emission (AIE) with a nonmonotonic AIE curve. Moreover, the acidified ASQ solution is also a pure organic up-conversion and white-light-emitting system. A new mechanistic viewpoint is established to explain its unique anti-Stokes emission. Besides, ASQ shows multivalent functionalities including albumin protein sensing, ratiometric pH sensing, and amine gas sensing, etc. Therefore, ASQ is proved to be a fundamentally important and versatile functional “intelligent” AIE luminogen with nonmonotonic multi-responses to multi-stimuli. <br></p>

2020 ◽  
Author(s):  
Yujie Tu ◽  
Yeqing Yu ◽  
Diwen Xiao ◽  
Junkai Liu ◽  
zheng zhao ◽  
...  

<p>Intelligent stimulus-response (S/R) systems are the basis of natural process and machine control, and have been intensively explored in biomimetic design, analytical chemistry and biological applications. However, nonmonotonic multi-S/R systems are still rarely studied so far. Now, we propose a rational design strategy to achieve such a unique S/R system by integrating opposite luminescence behaviors in one molecule. When solvent polarity increases, many heterocycles often become more emissive due to the suppression of the proximity effect. However, molecules with donor-acceptor (D-A) structures tend to be less emissive because of the twisted intramolecular charge transfer. Meanwhile, protonation on D/A moieties will weaken/strengthen the D-A interaction to result in blue/red-shifted emissions. By combining a protonatable heterocyclic acceptor and a protonatable donor together in one molecule, we can easily achieve nonmonotonic brightness responses to polarity stimuli and nonmonotonic color responses to pH stimuli. In this work, a simple molecule, namely ASQ is chosen as the model compound to verify the design strategy feasibility. It successfully shows two opposite trends of responses to polarity and pH stimuli, and aggregation-induced emission (AIE) with a nonmonotonic AIE curve. Moreover, the acidified ASQ solution is also a pure organic up-conversion and white-light-emitting system. A new mechanistic viewpoint is established to explain its unique anti-Stokes emission. Besides, ASQ shows multivalent functionalities including albumin protein sensing, ratiometric pH sensing, and amine gas sensing, etc. Therefore, ASQ is proved to be a fundamentally important and versatile functional “intelligent” AIE luminogen with nonmonotonic multi-responses to multi-stimuli. <br></p>


2020 ◽  
Author(s):  
Yujie Tu ◽  
Yeqing Yu ◽  
Diwen Xiao ◽  
Junkai Liu ◽  
zheng zhao ◽  
...  

<p>Intelligent stimulus-response (S/R) systems are the basis of natural process and machine control, and have been intensively explored in biomimetic design, analytical chemistry and biological applications. However, nonmonotonic multi-S/R systems are still rarely studied so far. Now, we propose a rational design strategy to achieve such a unique S/R system by integrating opposite luminescence behaviors in one molecule. When solvent polarity increases, many heterocycles often become more emissive due to the suppression of the proximity effect. However, molecules with donor-acceptor (D-A) structures tend to be less emissive because of the twisted intramolecular charge transfer. Meanwhile, protonation on D/A moieties will weaken/strengthen the D-A interaction to result in blue/red-shifted emissions. By combining a protonatable heterocyclic acceptor and a protonatable donor together in one molecule, we can easily achieve nonmonotonic brightness responses to polarity stimuli and nonmonotonic color responses to pH stimuli. In this work, a simple molecule, namely ASQ is chosen as the model compound to verify the design strategy feasibility. It successfully shows two opposite trends of responses to polarity and pH stimuli, and aggregation-induced emission (AIE) with a nonmonotonic AIE curve. Moreover, the acidified ASQ solution is also a pure organic up-conversion and white-light-emitting system. A new mechanistic viewpoint is established to explain its unique anti-Stokes emission. Besides, ASQ shows multivalent functionalities including albumin protein sensing, ratiometric pH sensing, and amine gas sensing, etc. Therefore, ASQ is proved to be a fundamentally important and versatile functional “intelligent” AIE luminogen with nonmonotonic multi-responses to multi-stimuli. <br></p>


2019 ◽  
Vol 55 (30) ◽  
pp. 4331-4334 ◽  
Author(s):  
Sabyasachi Pramanik ◽  
Shilaj Roy ◽  
Arup Mondal ◽  
Satyapriya Bhandari

Ratiometric pH sensing in the physiological range of pH 6.5–10.3 by a white light emitting quantum dot complex – following the changes in luminescence intensity ratio, color and chromaticity – is described herein.


2017 ◽  
Vol 41 (12) ◽  
pp. 5191-5197 ◽  
Author(s):  
Guang Li ◽  
Juewen Zhao ◽  
Dan Zhang ◽  
Jieji Zhu ◽  
Zhichun Shi ◽  
...  

Three blue emitters via twisted donor–acceptor molecular design strategy show extremely good color purity without impairing the excellent photophysical and electrical properties. The color purity of nondoped devices can meet the blue OLED requirements of NTSC.


RSC Advances ◽  
2021 ◽  
Vol 11 (20) ◽  
pp. 12036-12042
Author(s):  
Yao Liu ◽  
Yalong Cong ◽  
Chuanxi Zhang ◽  
Bohuan Fang ◽  
Yue Pan ◽  
...  

A rational design strategy was proposed to improve the efficient utilization of alternative biomimetic cofactor by P450 BM3 enzyme.


2021 ◽  
Vol 23 (12) ◽  
pp. 7495-7503
Author(s):  
Wanlin Cai ◽  
Kai Ren ◽  
Ancong Zhao ◽  
Xiulan Wu ◽  
Rongxing He ◽  
...  

Compared to the PtOO7-based system, the greater EQE of the PtON7-based system is mainly governed by the stronger energy transfer efficiency (ηEET); thus, it is necessary to evaluate ηEET from hosts to guests for the rational design of OLEDs.


Author(s):  
Suryakanti Debata ◽  
Smruti R. Sahoo ◽  
Rudranarayan Khatua ◽  
Sridhar Sahu

In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds.


2021 ◽  
Vol 03 (02) ◽  
pp. 303-308
Author(s):  
Dror Ben Abba Amiel ◽  
Choongik Kim ◽  
Ori Gidron

Donor–acceptor–donor (DAD) triad systems are commonly applied as active materials in ambipolar organic field-effect transistors, organic solar cells, and NIR-emitting organic light-emitting diodes. Often, these triads utilize oligothiophenes as donors, whereas their oxygen-containing analogs, oligofurans, are far less studied in this setup. Here we introduce a family of DAD triads in which the donors are oligofurans and the acceptor is benzothiadiazole. In a combined computational and experimental study, we show that these triads display optical bandgaps similar to those of their thiophene analogs, and that a bifuran donor is sufficient to produce emission in the NIR spectral region. The presence of a central acceptor unit increases the photostability of oligofuran-based DAD systems compared with parent oligofurans of the similar length.


Sign in / Sign up

Export Citation Format

Share Document