scholarly journals Azetidinimines as a Novel Series of Non-Covalent Broad-Spectrum Inhibitors of β-Lactamases with Submicromolar Activities Against Carbapenemases of Classes A, B and D

Author(s):  
Eugénie Romero ◽  
Saoussen Oueslati ◽  
Mohamed Benchekroun ◽  
Agathe C. A. D’Hollander ◽  
Sandrine Ventre ◽  
...  

The increasingly worrisome situation of antimicrobial resistances has pushed synthetic chemists to design original molecules that can fight these resistances. To do so, inhibiting β-lactamases, one of the main modes of resistance to β-lactam antibiotics, is one of the most sought-after strategies, as recently evidenced by the development and approval of avibactam, relabactam and vaborbactam. Yet molecules able to inhibit simultaneously β-lactamases belonging to different molecular classes remain scarce and currently there is no metallo-β-lactamase inhibitor approved for clinical use. Having recently developed a synthetic methodology to access imino-analogues of β-lactams (Chem. – Eur. J. 2017, 23, 12991,see ref) we decided to evaluate them as potential β-lactamase inhibitors and specifically against carbapenemases, which can hydrolyze and inactivate penicillins, cephalosporins and carbapenems. Herein we eport our findings that show that our newly developed family of molecules are indeed excellent β-lactamase inhibitors and that our lead compound can inhibit NDM-1 (0.1 µM), KPC-2 (0.4 µM), and OXA-48 (0.6 µM) even though these three enzymes belong to three different molecular classes of carbapenemases. This lead compound also inhibits the ESBL CTX-M-15 and the cephalosporinase CMY-2, it is metabolically stable, and can repotentiate imipenem against a resistant strain of Escherichia coli expressing NDM-1.<br><br><br>

2020 ◽  
Author(s):  
Eugénie Romero ◽  
Saoussen Oueslati ◽  
Mohamed Benchekroun ◽  
Agathe C. A. D’Hollander ◽  
Sandrine Ventre ◽  
...  

The increasingly worrisome situation of antimicrobial resistances has pushed synthetic chemists to design original molecules that can fight these resistances. To do so, inhibiting β-lactamases, one of the main modes of resistance to β-lactam antibiotics, is one of the most sought-after strategies, as recently evidenced by the development and approval of avibactam, relabactam and vaborbactam. Yet molecules able to inhibit simultaneously β-lactamases belonging to different molecular classes remain scarce and currently there is no metallo-β-lactamase inhibitor approved for clinical use. Having recently developed a synthetic methodology to access imino-analogues of β-lactams (Chem. – Eur. J. 2017, 23, 12991,see ref) we decided to evaluate them as potential β-lactamase inhibitors and specifically against carbapenemases, which can hydrolyze and inactivate penicillins, cephalosporins and carbapenems. Herein we eport our findings that show that our newly developed family of molecules are indeed excellent β-lactamase inhibitors and that our lead compound can inhibit NDM-1 (0.1 µM), KPC-2 (0.4 µM), and OXA-48 (0.6 µM) even though these three enzymes belong to three different molecular classes of carbapenemases. This lead compound also inhibits the ESBL CTX-M-15 and the cephalosporinase CMY-2, it is metabolically stable, and can repotentiate imipenem against a resistant strain of Escherichia coli expressing NDM-1.<br><br><br>


2014 ◽  
Vol 59 (3) ◽  
pp. 1789-1793 ◽  
Author(s):  
Henry Li ◽  
Mark Estabrook ◽  
George A. Jacoby ◽  
Wright W. Nichols ◽  
Raymond T. Testa ◽  
...  

ABSTRACTAvibactam, a broad-spectrum β-lactamase inhibitor, was tested with ceftazidime, ceftaroline, or aztreonam against 57 well-characterized Gram-negative strains producing β-lactamases from all molecular classes. Most strains were nonsusceptible to the β-lactams alone. Against AmpC-, extended-spectrum β-lactamase (ESBL)-, and KPC-producingEnterobacteriaceaeorPseudomonas aeruginosa, avibactam lowered ceftazidime, ceftaroline, or aztreonam MICs up to 2,048-fold, to ≤4 μg/ml. Aztreonam-avibactam MICs against a VIM-1 metallo-β-lactamase-producingEnterobacter cloacaeand a VIM-1/KPC-3-producingEscherichia coliisolate were 0.12 and 8 μg/ml, respectively.


Author(s):  
Marta Hernández-García ◽  
María García-Castillo ◽  
Patricia Ruiz-Garbajosa ◽  
Germán Bou ◽  
María Siller-Ruiz ◽  
...  

Novel β-lactam-β-lactamase inhibitor combinations currently approved for clinical use are poorly active against metallo-β-lactamase (MBL)-producing strains. We evaluated the in vitro activity of cefepime-taniborbactam (FTB, formerly cefepime/VNRX-5133) and comparator agents against carbapenemase-producing Enterobacterales (n=247) and carbapenem-resistant Pseudomonas spp. (n=170) clinical isolates prospectively collected from different clinical origin in patients admitted to 8 Spanish hospitals. FTB was the most active agent in both Enterobacterales (97.6% MIC FTB ≤8/4 mg/L) and Pseudomonas populations (67.1% MIC FTB ≤8/4 mg/L). MIC FTB was >8 mg/L in 6/247 (2.4%) Enterobacterales isolates (3 KPC- Klebsiella pneumoniae , 1 VIM- Enterobacter cloacae , 1 IMP- E. cloacae and 1 NDM- Escherichia coli ) and in 56/170 (32.9%) Pseudomonas spp., 19 of them carbapenemase producers (15 VIM, 2 GES, 1 GES+VIM, 1 GES+KPC). Against the Enterobacterales isolates with meropenem MIC>2 mg/L (138/247), FTB was the most active agent against both serine-β-lactamases (107/138) and MBL producers (31/138) (97.2% and 93.5% MIC FTB ≤8/4 mg/L, respectively) whereas the activity of comparators was reduced, particularly against the MBL producers (ceftazidime-avibactam, 94.4% and 12.9%; meropenem-vaborbactam, 85.0% and 64.5%; imipenem-relebactam, 76.6% and 9.7%; ceftolozane-tazobactam, 1.9% and 0%; piperacillin-tazobactam, 0% and 0%, respectively). Among the meropenem-resistant Pseudomonas spp. isolates (163/170, MIC>2 mg/L), activity of FTB against serine-β-lactamase (35/163) and MBL producers (43/163) was 88.6% and 65.1%, respectively, whereas the susceptibility of comparators was: ceftazidime-avibactam, 88.5% and 16.0%; meropenem-vaborbactam, 8.5% and 7.0%; imipenem-relebactam, 2.9% and 2.3%; ceftolozane-tazobactam, 0% and 2.3%; and piperacillin-tazobactam, 0% and 0%, respectively. Microbiological results suggest FTB as a potential therapeutic option in patients infected with carbapenemase-producing Enterobacterales and carbapenem-resistant Pseudomonas isolates, including MBL producers.


1973 ◽  
Vol 248 (18) ◽  
pp. 6375-6379
Author(s):  
Myra N. Williams ◽  
Martin Poe ◽  
Norma J. Greenfield ◽  
Jordan M. Hirshfield ◽  
Karst Hoogsteen

2015 ◽  
Vol 59 (8) ◽  
pp. 4504-4509 ◽  
Author(s):  
Mamun-Ur Rashid ◽  
Staffan Rosenborg ◽  
Georgios Panagiotidis ◽  
Karin Söderberg-Löfdal ◽  
Andrej Weintraub ◽  
...  

ABSTRACTCeftaroline-avibactam is a new combination of the antibiotic ceftaroline with a novel non-β-lactam β-lactamase inhibitor, avibactam. The purpose of the present study was to investigate the effect of ceftaroline-avibactam on the human intestinal microbiota. Fourteen healthy volunteers received ceftaroline-avibactam (600 mg ceftaroline fosamil and 600 mg avibactam) intravenously over 2 h every 8 h on days 1 to 6 and as a single dose on day 7. Fecal samples were collected on day −1 (within 24 h of the first infusion on day 1) and on days 2, 5, 7, 9, 14, and 21.Escherichia colinumbers decreased during the study and normalized on day 21. An increased number ofKlebsiellabacteria appeared on day 14 and normalized on day 21. The number of other enterobacteria decreased during the study, and the number of enterococci decreased from days 2 to 7 and normalized on day 9.Candidanumbers increased from days 5 to 9 and normalized after day 14. The number of lactobacilli decreased during the study and recovered on day 14. The number of bifidobacteria decreased on day 2 and normalized on day 21. The number ofBacteroidesbacteria was unchanged.Clostridium difficilenumbers decreased on days 7 and 9 and increased on days 14 and 21. A toxigenicC. difficilestrain was detected in one volunteer on day 21 with no reported adverse events. Plasma samples were collected on days −1, 2, 5, and 7. Ceftaroline and avibactam concentrations were 0 to 34.5 mg/liter and 0 to 61.6 mg/liter, respectively, in plasma and 0 to 35.4 mg/kg and 0 to 98.5 mg/kg, respectively, in feces. (This study is registered in the European Clinical Trials Database [https://eudract.ema.europa.eu/] under number EudraCT 2012 004921-25.)


2019 ◽  
Vol 63 (6) ◽  
pp. 2789-2801 ◽  
Author(s):  
Bin Liu ◽  
Robert E. Lee Trout ◽  
Guo-Hua Chu ◽  
Daniel McGarry ◽  
Randy W. Jackson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document