human intestinal microbiota
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 59)

H-INDEX

44
(FIVE YEARS 6)

Author(s):  
Alexander Viktorovich Zhestkov ◽  
Olga Olegovna Pobezhimova

Particular attention is paid to atopic dermatitis (AD) as one of the earliest and most frequent clinical manifestations of allergy in children. AD is a multifactorial disease, the development of which is closely related to genetic defects in the immune response and adverse environmental influences. It was found that the action of these factors determines the rate of development of AD, especially in young children. One of these factors is a violation of the intestinal microbiota, which plays an essential role in the development of the child's immune system and has a protective effect in the formation of atopy. It has been shown that 80-95% of patients with AD have intestinal dysbiosis, while, along with a deficiency of lactobacilli and bifidobacteria, there is an excessive growth of Staphilococcus. The use of modern molecular genetics technologies made it possible to obtain a fairly complete understanding of the number, genetic heterogeneity and complexity of the bacterial components of the intestinal microbiota, while clinical studies have shown the importance of its interactions with the host organism in the formation of various forms of pathology. It has been established that the human intestinal microbiota is an evolutionary set of microorganisms that exists as a balanced microecological system in which the symbiotic microflora is in dynamic equilibrium, forms microbial associations that occupy a certain ecological niche in it, and is one of the most important factors affecting human health. The gut microbiota plays an important role in the pathogenesis of atopic dermatitis, which causes immunosuppression, but the exact mechanism of its action is still unclear. It is widely known that probiotics act on the immune system. These are living microorganisms with immunomodulatory effects that stimulate Th1 cytokines and suppress Th2 responses, which are being investigated for the treatment of several diseases. The most commonly used probiotics are part of the intestinal microflora such as lactobacilli, bifidobacteria and enterococci. The purpose of this article: to systematize the information available today on the influence of the composition of the intestinal microflora on the immunopathogenesis of atopic dermatitis.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12513
Author(s):  
Jin-Yi Wan ◽  
Jing-Xuan Wan ◽  
Shilei Wang ◽  
Xiaolu Wang ◽  
Wenqian Guo ◽  
...  

Oplopanax elatus (Nakai) Nakai, in the Araliaceae family, has been used in traditional Chinese medicine (TCM) to treat diseases as an adaptogen for thousands of years. This study established an ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) method to identify chemical components and biotransformation metabolites of root bark extract from O. elatus. A total of 18 compounds were characterized in O. elatus extract, and 62 metabolites by human intestinal microbiota were detected. Two polyynes, falcarindiol and oplopandiol were recognized as the main components of O. elatus, whose metabolites are further illustrated. Several metabolic pathways were proposed to generate the detected metabolites, including methylation, hydrogenation, demethylation, dehydroxylation, and hydroxylation. These findings indicated that intestinal microbiota might play an essential role in mediating the bioactivity of O. elatus.


Author(s):  
François Javaudin ◽  
Chloé Latour ◽  
Laurent Debarbieux ◽  
Quentin Lamy-Besnier

Several human intestinal microbiota studies suggest that bacteriophages, viruses infecting bacteria, play a role in gut homeostasis. Currently, bacteriophages are considered a tool to precisely engineer the intestinal microbiota, but they have also attracted considerable attention as a possible solution to fight against bacterial pathogens resistant to antibiotics.


Author(s):  
Liliana Maribel Perez‐Perez ◽  
José Ángel Huerta‐Ocampo ◽  
José Rogelio Ramos‐Enríquez ◽  
Saúl Ruiz‐Cruz ◽  
Francisco Javier Wong‐Corral ◽  
...  

Author(s):  
Umama Khan ◽  
S M Niazur Rahman ◽  
Nazmun Nahar Alam

With the ever-increasing rate, obesity has become an epidemiological problem throughout the globe comprising about 39% of the world population as of now. Among several reasons, disruption of the gut microbial ecosystem might contribute to the pathogenesis of metabolic disorders, including obesity, metabolic syndrome, type 2 diabetes, and other associated comorbidities. Though the mechanisms related to dysbiosis are unclear, diet might play a modulating role where different dietary approaches manipulate microbial richness and abundance as well as stability. For instance, shifting of Firmicutes and Bacteroidetes ratio in the gut might have a role in association with the dietary approaches and ingestion duration. Along with altered gut microbial composition, microbial metabolites such as short-chain fatty acids (SCFA) after ingestion of non-digestible dietary starches may have an impact on host metabolism by regulating lipogenesis, gluconeogenesis, and inflammation with potential associations to health and obesity. The dietary approaches like carbohydrates, fibre, protein, and/or fat diet at various arrangements can make a shift in the composition of gut microbiota if introduced for a short period. However, the unique pattern of the gut microbes usually remains the same along with the longer period of habitual diet. Though the short-term dietary intervention or circadian rhythm influences a transient change in gut microbes, other than habitual diet, the understanding related to long-term dietary change-induced permanent alterations is minimum. Alternatively, the usage of prebiotics, probiotics as well as postbiotics could be beneficial to overcome dysbiosis. This review highlights the current knowledge and the interaction between the human intestinal microbiota and diet as a modifying factor, in obesity allowing the scientists to uncover novel targets and tools to use as customized therapy.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 156
Author(s):  
Regina Haindl ◽  
Simon Schick ◽  
Ulrich Kulozik

Fecal microbiota transplantation, an alternative treatment method for gastrointestinal diseases, has a high recovery rate, but comes with disadvantages, such as high donor requirements and the low storability of stool. A solution to overcome these problems is the cultivation of an in vitro microbiota. However, the influence of cultivation conditions on the pH are yet unknown. In this study, the influence of the cultivation pH (6.0–7.0) on the system’s behavior and characteristics, including cell count, metabolism, and microbial composition, was investigated. With an increasing cultivation pH, an increase in cell count, total amount of SCFAs, acetate, propionate, and the abundance of Bacteroidetes and Verrucomicrobia were observed. For the concentration of butyrate and the abundance of Actinobacteria and Firmicutes, a decrease with increasing pH was determined. For the concentration of isovalerate, the abundance of Proteobacteria and diversity (richness and Shannon effective), no effect of the pH was observed. Health-promoting genera were more abundant at lower pH levels. When cultivating an in vitro microbiota, all investigated pH values created a diverse and stable system. Ultimately, therefore, the choice of pH creates significant differences in the established in vitro microbiota, but no clear recommendations for a special value can be made.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 886
Author(s):  
Youngbeom Ahn ◽  
Ji Young Jung ◽  
Ohgew Kweon ◽  
Brian T. Veach ◽  
Sangeeta Khare ◽  
...  

Studying potential dietary exposure to antimicrobial drug residues via meat and dairy products is essential to ensure human health and consumer safety. When studying how antimicrobial residues in food impact the development of antimicrobial drug resistance and disrupt normal bacteria community structure in the intestine, there are diverse methodological challenges to overcome. In this study, traditional cultures and molecular analysis techniques were used to determine the effects of tetracycline at chronic subinhibitory exposure levels on human intestinal microbiota using an in vitro continuous flow bioreactor. Six bioreactor culture vessels containing human fecal suspensions were maintained at 37 °C for 7 days. After a steady state was achieved, the suspensions were dosed with 0, 0.015, 0.15, 1.5, 15, or 150 µg/mL tetracycline, respectively. Exposure to 150 µg/mL tetracycline resulted in a decrease of total anaerobic bacteria from 1.9 × 107 ± 0.3 × 107 down to 2 × 106 ± 0.8 × 106 CFU/mL. Dose-dependent effects of tetracycline were noted for perturbations of tetB and tetD gene expression and changes in acetate and propionate concentrations. Although no-observed-adverse-effect concentrations differed, depending on the traditional cultures and the molecular analysis techniques used, this in vitro continuous flow bioreactor study contributes to the knowledge base regarding the impact of chronic exposure of tetracycline on human intestinal microbiota.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kengo Sasaki ◽  
Tomoyuki Mori ◽  
Namiko Hoshi ◽  
Daisuke Sasaki ◽  
Jun Inoue ◽  
...  

AbstractW27 monoclonal immunoglobulin A (IgA) suppresses pathogenic Escherichia coli cell growth; however, its effect on the human intestine remains unclear. We aimed to determine how W27 IgA affects the human colonic microbiota using the in vitro microbiota model. This model was established using fecal samples collected from 12 healthy volunteers; after anaerobic cultivation, each model was found to retain the genera found in the original human fecal samples. After pre-incubating W27 IgA with the respective fecal sample under aerobic conditions, the mixture of W27 IgA (final concentration, 0.5 μg/mL) and each fecal sample was added to the in vitro microbiota model and cultured under anaerobic conditions. Next-generation sequencing of the bacterial 16S rRNA gene revealed that W27 IgA significantly decreased the relative abundance of bacteria related to the genus Escherichia in the model. Additionally, at a final concentration of 5 μg/mL, W27 IgA delayed growth in the pure culture of Escherichia coli isolated from human fecal samples. Our study thus revealed the suppressive effect of W27 IgA on the genus Escherichia at relatively low-concentrations and the usefulness of an in vitro microbiota model to evaluate the effect of IgA as a gut microbiota regulator.


Sign in / Sign up

Export Citation Format

Share Document