scholarly journals Sustainable Hydrogenation of Nitroarenes to Anilines with Highly Active In-Situ Generated Copper Nanoparticles

Author(s):  
Fatma Pelin Kinik ◽  
Tu Ngugen ◽  
Mounir Mensi ◽  
Christopher Ireland ◽  
Kyriakos Stylianou ◽  
...  

<div> <div> <div> <p>Metal nanoparticles (NPs) are usually stabilized by a capping agent, a surfactant, or a support material, to maintain their integrity. However, these strategies can impact their intrinsic catalytic activity. Here, we demonstrate that the in-situ formation of copper NPs (Cu0NPs) upon the reduction of the earth-abundant Jacquesdietrichite mineral with ammonia borane (NH3BH3, AB) can provide an alternative solution for stability issues. During the formation of Cu0NPs, hydrogen gas is released from AB, and utilized for the reduction of nitroarenes to their corresponding anilines, at room temperature and under ambient pressure. After the nitroarene-to-aniline conversion is completed, regeneration of the mineral occurs upon the exposure of Cu0NPs to air. Thus, the hydrogenation reaction can be performed multiple times without the loss of the Cu0NPs’ activity. As a proof-of-concept, the hydrogenation of drug molecules “flutamide” and “nimesulide” was also performed and isolated their corresponding amino-compounds in high selectivity and yield. </p> </div> </div> </div>

2020 ◽  
Author(s):  
Fatma Pelin Kinik ◽  
Tu Ngugen ◽  
Mounir Mensi ◽  
Christopher Ireland ◽  
Kyriakos Stylianou ◽  
...  

<div> <div> <div> <p>Metal nanoparticles (NPs) are usually stabilized by a capping agent, a surfactant, or a support material, to maintain their integrity. However, these strategies can impact their intrinsic catalytic activity. Here, we demonstrate that the in-situ formation of copper NPs (Cu0NPs) upon the reduction of the earth-abundant Jacquesdietrichite mineral with ammonia borane (NH3BH3, AB) can provide an alternative solution for stability issues. During the formation of Cu0NPs, hydrogen gas is released from AB, and utilized for the reduction of nitroarenes to their corresponding anilines, at room temperature and under ambient pressure. After the nitroarene-to-aniline conversion is completed, regeneration of the mineral occurs upon the exposure of Cu0NPs to air. Thus, the hydrogenation reaction can be performed multiple times without the loss of the Cu0NPs’ activity. As a proof-of-concept, the hydrogenation of drug molecules “flutamide” and “nimesulide” was also performed and isolated their corresponding amino-compounds in high selectivity and yield. </p> </div> </div> </div>


2021 ◽  
Author(s):  
Noel Baker ◽  
Michel Anciaux ◽  
Philippe Demoulin ◽  
Didier Fussen ◽  
Didier Pieroux ◽  
...  

&lt;p&gt;Led by the Belgian Institute for Space Aeronomy, the ESA-backed mission PICASSO (PICo-Satellite for Atmospheric and Space Science Observations) successfully launched its gold-plated satellite on an Arianespace Vega rocket in September 2020. PICASSO is a 3U CubeSat mission in collaboration with VTT Technical Research Center of Finland Ltd, AAC Clyde Space Ltd. (UK), and the CSL (Centre Spatial de Li&amp;#232;ge), Belgium. The commissioning of the two onboard scientific instruments is currently ongoing; once they are operational, PICASSO will be capable of providing scientific measurements of the Earth&amp;#8217;s atmosphere. VISION, proposed by BISA and developed by VTT, will retrieve vertical profiles of ozone and temperature by observing the Earth's atmospheric limb during orbital Sun occultation; and SLP, developed by BISA, will measure in situ plasma density and electron temperature together with the spacecraft potential.&lt;/p&gt;&lt;p&gt;Serving as a groundbreaking proof-of-concept, the PICASSO mission has taught valuable lessons about the advantages of CubeSat technology as well as its many complexities and challenges. These lessons learned, along with preliminary measurements from the two instruments, will be presented and discussed.&lt;/p&gt;


2006 ◽  
Vol 971 ◽  
Author(s):  
Koya Okudera ◽  
Koichi Hamada ◽  
Takanori Suda ◽  
Naoyuki Hashimoto ◽  
Somei Ohnuki ◽  
...  

ABSTRACTHigh-resolution and “environmental cell” microscopy were applied for surveying the reaction of hydrides in Vanadium and Magnesium based alloys, which are candidate for hydrogen storage materials of advanced hydrogen energy systems. For clarify the hydrogenation process, in-situ experiment was carried out by using 200 kV TEM equipped with a newly developed environmental cell, which is enable to observe transmitted image and electron-diffraction under gas reaction under hydrogen environment of 0.1 MPa at room temperature. In case of Vanadium, bending fringe was created under hydrogen-gas of 0.1 MPa, which means that hydrogen reaction is not so quick in this case, and the local stress due to the hydrogen solution caused the fringes. In case of Magnesium, the gas reacted with the powders and showed the swelling, where the surface steps with several ten nm become to more straight, and also SADP showed the formation of MgH2. In-situ experiment for hydrogenation reaction by using the environmental cell has started recently, therefore the precise studies will be continued, as well as its improvement, especially in the transparence films.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


ACS Catalysis ◽  
2021 ◽  
pp. 8174-8182
Author(s):  
Kailu Guo ◽  
Yantao Wang ◽  
Junfeng Huang ◽  
Min Lu ◽  
Hua Li ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Wei Bing ◽  
Faming Wang ◽  
Yuhuan Sun ◽  
Jinsong Ren ◽  
Xiaogang Qu

An environmentally friendly biomimetic strategy has been presented and validated for the catalytic hydrogenation reaction in live bacteria. In situ formed ultra-fine metal nanoparticles can realize highly efficient asymmetric hydrogenation reactions.


Sign in / Sign up

Export Citation Format

Share Document