scholarly journals Trichloro(Dinitrogen)platinate(II)

Author(s):  
Gilian T. Thomas ◽  
Sofia Donnecke ◽  
Irina Paci ◽  
J Scott McIndoe

<p>Zeise’s salt, [PtCl<sub>3</sub>(H<sub>2</sub>C=CH<sub>2</sub>)]<sup>–</sup><sub>,</sub> is the oldest known organometallic complex, featuring ethylene strongly bound to a platinum salt. Many derivatives are known, but none involving dinitrogen, and indeed dinitrogen complexes are unknown for both platinum and palladium. Electrospray ionization mass spectrometry of K<sub>2</sub>[PtCl<sub>4</sub>] solutions generate strong ions corresponding to [PtCl<sub>3</sub>(N<sub>2</sub>)]<sup>–</sup>, whose identity was confirmed through ion mobility spectroscopy and MS/MS experiments that proved it to be distinct from its isobaric counterparts [PtCl<sub>3</sub>(C<sub>2</sub>H<sub>4</sub>)]<sup>–</sup> and [PtCl<sub>3</sub>(CO)]<sup>–</sup>. Computational analysis established a gas-phase platinum-dinitrogen bond strength of 116 kJ mol<sup>-1</sup>, substantially weaker than the ethylene and carbon monoxide analogues but stronger than for polar solvents such as water, methanol and dimethylformamide, and strong enough that the calculated N-N bond length of 1.119 Å represents weakening to a degree typical of isolated dinitrogen complexes. </p>

2020 ◽  
Author(s):  
Gilian T. Thomas ◽  
Sofia Donnecke ◽  
Irina Paci ◽  
J Scott McIndoe

<p>Zeise’s salt, [PtCl<sub>3</sub>(H<sub>2</sub>C=CH<sub>2</sub>)]<sup>–</sup><sub>,</sub> is the oldest known organometallic complex, featuring ethylene strongly bound to a platinum salt. Many derivatives are known, but none involving dinitrogen, and indeed dinitrogen complexes are unknown for both platinum and palladium. Electrospray ionization mass spectrometry of K<sub>2</sub>[PtCl<sub>4</sub>] solutions generate strong ions corresponding to [PtCl<sub>3</sub>(N<sub>2</sub>)]<sup>–</sup>, whose identity was confirmed through ion mobility spectroscopy and MS/MS experiments that proved it to be distinct from its isobaric counterparts [PtCl<sub>3</sub>(C<sub>2</sub>H<sub>4</sub>)]<sup>–</sup> and [PtCl<sub>3</sub>(CO)]<sup>–</sup>. Computational analysis established a gas-phase platinum-dinitrogen bond strength of 116 kJ mol<sup>-1</sup>, substantially weaker than the ethylene and carbon monoxide analogues but stronger than for polar solvents such as water, methanol and dimethylformamide, and strong enough that the calculated N-N bond length of 1.119 Å represents weakening to a degree typical of isolated dinitrogen complexes. </p>


2016 ◽  
Vol 52 (54) ◽  
pp. 8397-8400 ◽  
Author(s):  
Ananya Baksi ◽  
Papri Chakraborty ◽  
Shridevi Bhat ◽  
Ganapati Natarajan ◽  
Thalappil Pradeep

Dimeric and trimeric Au25(SR)18 have been detected experimentally by electrospray ionization mass spectrometry (ESI MS) and separated by ion mobility (IM).


2021 ◽  
Vol 14 (6) ◽  
pp. 498
Author(s):  
Evolène Deslignière ◽  
Anthony Ehkirch ◽  
Bastiaan L. Duivelshof ◽  
Hanna Toftevall ◽  
Jonathan Sjögren ◽  
...  

Antibody-drug conjugates (ADCs) are biotherapeutics consisting of a tumor-targeting monoclonal antibody (mAb) linked covalently to a cytotoxic drug. Early generation ADCs were predominantly obtained through non-selective conjugation methods based on lysine and cysteine residues, resulting in heterogeneous populations with varying drug-to-antibody ratios (DAR). Site-specific conjugation is one of the current challenges in ADC development, allowing for controlled conjugation and production of homogeneous ADCs. We report here the characterization of a site-specific DAR2 ADC generated with the GlyCLICK three-step process, which involves glycan-based enzymatic remodeling and click chemistry, using state-of-the-art native mass spectrometry (nMS) methods. The conjugation process was monitored with size exclusion chromatography coupled to nMS (SEC-nMS), which offered a straightforward identification and quantification of all reaction products, providing a direct snapshot of the ADC homogeneity. Benefits of SEC-nMS were further demonstrated for forced degradation studies, for which fragments generated upon thermal stress were clearly identified, with no deconjugation of the drug linker observed for the T-GlyGLICK-DM1 ADC. Lastly, innovative ion mobility-based collision-induced unfolding (CIU) approaches were used to assess the gas-phase behavior of compounds along the conjugation process, highlighting an increased resistance of the mAb against gas-phase unfolding upon drug conjugation. Altogether, these state-of-the-art nMS methods represent innovative approaches to investigate drug loading and distribution of last generation ADCs, their evolution during the bioconjugation process and their impact on gas-phase stabilities. We envision nMS and CIU methods to improve the conformational characterization of next generation-empowered mAb-derived products such as engineered nanobodies, bispecific ADCs or immunocytokines.


Sign in / Sign up

Export Citation Format

Share Document