scholarly journals On-surface Synthesis of [7]triangulene Quantum Ring via Antidot Engineering

Author(s):  
Jie Su ◽  
Wei Fan ◽  
Pingo Mutombo ◽  
Xinnan Peng ◽  
Shaotang Song ◽  
...  

The ability to engineer geometrically well-defined antidots in large triangulene homologues allows for creating an entire family of triangulene quantum ring (TQR) structures with tunable high-spin ground state and magnetic ordering, crucial for next-generation molecular spintronic devices. Herein, we report the synthesis of an open-shell [7]triangulene quantum ring ([7]TQR) molecule on Au(111) through the surface-assisted cyclodehydrogenation of a rationally-designed kekulene derivative. Bond-resolved scanning tunneling microscopy (BR-STM) unambiguously imaged the molecular backbone of a single [7]TQR with a triangular zigzag edge topology, which can be viewed as [7]triangulene decorated with a coronene-like antidot in the molecular centre. Additionally, dI/dV mapping reveals that both inner and outer zigzag edges contribute to the edge-localized and spin-polarized electronic states of [7]TQR. Both experimental results and spin-polarized density functional theory calculations indicate that [7]TQR retains its open-shell septuple ground-state (� = 3) on Au(111). This work demonstrates a new route for the design of high-spin graphene quantum rings as the key components for future quantum devices.

2020 ◽  
Author(s):  
Jie Su ◽  
Wei Fan ◽  
Pingo Mutombo ◽  
Xinnan Peng ◽  
Shaotang Song ◽  
...  

The ability to engineer geometrically well-defined antidots in large triangulene homologues allows for creating an entire family of triangulene quantum ring (TQR) structures with tunable high-spin ground state and magnetic ordering, crucial for next-generation molecular spintronic devices. Herein, we report the synthesis of an open-shell [7]triangulene quantum ring ([7]TQR) molecule on Au(111) through the surface-assisted cyclodehydrogenation of a rationally-designed kekulene derivative. Bond-resolved scanning tunneling microscopy (BR-STM) unambiguously imaged the molecular backbone of a single [7]TQR with a triangular zigzag edge topology, which can be viewed as [7]triangulene decorated with a coronene-like antidot in the molecular centre. Additionally, dI/dV mapping reveals that both inner and outer zigzag edges contribute to the edge-localized and spin-polarized electronic states of [7]TQR. Both experimental results and spin-polarized density functional theory calculations indicate that [7]TQR retains its open-shell septuple ground-state (� = 3) on Au(111). This work demonstrates a new route for the design of high-spin graphene quantum rings as the key components for future quantum devices.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Kuanysh Zhussupbekov ◽  
Lida Ansari ◽  
John B. McManus ◽  
Ainur Zhussupbekova ◽  
Igor V. Shvets ◽  
...  

AbstractThe properties and performance of two-dimensional (2D) materials can be greatly affected by point defects. PtTe2, a 2D material that belongs to the group 10 transition metal dichalcogenides, is a type-II Dirac semimetal, which has gained a lot of attention recently due to its potential for applications in catalysis, photonics, and spintronics. Here, we provide an experimental and theoretical investigation of point defects on and near the surface of PtTe2. Using scanning tunneling microscopy and scanning tunneling spectroscopy (STS) measurements, in combination with first-principle calculations, we identify and characterize five common surface and subsurface point defects. The influence of these defects on the electronic structure of PtTe2 is explored in detail through grid STS measurements and complementary density functional theory calculations. We believe these findings will be of significance to future efforts to engineer point defects in PtTe2, which is an interesting and enticing approach to tune the charge-carrier mobility and electron–hole recombination rates, as well as the site reactivity for catalysis.


2016 ◽  
Vol 113 (32) ◽  
pp. 8921-8926 ◽  
Author(s):  
Roland Bliem ◽  
Jessi E. S. van der Hoeven ◽  
Jan Hulva ◽  
Jiri Pavelec ◽  
Oscar Gamba ◽  
...  

Interactions between catalytically active metal particles and reactant gases depend strongly on the particle size, particularly in the subnanometer regime where the addition of just one atom can induce substantial changes in stability, morphology, and reactivity. Here, time-lapse scanning tunneling microscopy (STM) and density functional theory (DFT)-based calculations are used to study how CO exposure affects the stability of Pt adatoms and subnano clusters at the Fe3O4(001) surface, a model CO oxidation catalyst. The results reveal that CO plays a dual role: first, it induces mobility among otherwise stable Pt adatoms through the formation of Pt carbonyls (Pt1–CO), leading to agglomeration into subnano clusters. Second, the presence of the CO stabilizes the smallest clusters against decay at room temperature, significantly modifying the growth kinetics. At elevated temperatures, CO desorption results in a partial redispersion and recovery of the Pt adatom phase.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alex Inayeh ◽  
Ryan R. K. Groome ◽  
Ishwar Singh ◽  
Alex J. Veinot ◽  
Felipe Crasto de Lima ◽  
...  

AbstractAlthough the self-assembly of organic ligands on gold has been dominated by sulfur-based ligands for decades, a new ligand class, N-heterocyclic carbenes (NHCs), has appeared as an interesting alternative. However, fundamental questions surrounding self-assembly of this new ligand remain unanswered. Herein, we describe the effect of NHC structure, surface coverage, and substrate temperature on mobility, thermal stability, NHC surface geometry, and self-assembly. Analysis of NHC adsorption and self-assembly by scanning tunneling microscopy and density functional theory have revealed the importance of NHC-surface interactions and attractive NHC-NHC interactions on NHC monolayer structures. A remarkable way these interactions manifest is the need for a threshold NHC surface coverage to produce upright, adatom-mediated adsorption motifs with low surface diffusion. NHC wingtip structure is also critical, with primary substituents leading to the formation of flat-lying NHC2Au complexes, which have high mobility when isolated, but self-assemble into stable ordered lattices at higher surface concentrations. These and other studies of NHC surface chemistry will be crucial for the success of these next-generation monolayers.


1998 ◽  
Vol 53 (9) ◽  
pp. 755-765
Author(s):  
Christian Kollma ◽  
Sighart F. Fischer ◽  
Michael C. Böhm

AbstractThe origin of the displacement of the Fe atom in deoxymyoglobin with respect to the porphyrin plane in the high-spin state is examined by a qualitative molecular orbital (MO) analysis on the extended Hückel level. We find that attachment of a fifth ligand (imidazole in our model complex) to Fe(II)porphyrin favors the out-of-plane shift due to a strengthening of the bonding interaction between Fe and the nitrogen of the imidazole ligand. This results in a high-spin (5 = 2) ground state with Fe shifted out-of-plane for the five-coordinate complex instead of an intermediate spin ground state (5 = 1) with Fe lying in the plane for four-coordinate Fe(II)porphyrin. The relative energies of the different spin states as a function of the distance between Fe and the porphyrin plane are evaluated using an ROHF (restricted open shell Hartree-Fock) version of an INDO (intermediate neglect of differential overlap) method. We observe a level crossing between high-spin and intermediate spin states whereas the low-spin (5 = 0) state remains always higher in energy.


2001 ◽  
Vol 86 (18) ◽  
pp. 4132-4135 ◽  
Author(s):  
D. Wortmann ◽  
S. Heinze ◽  
Ph. Kurz ◽  
G. Bihlmayer ◽  
S. Blügel

Sign in / Sign up

Export Citation Format

Share Document