scholarly journals A β-Hairpin Epitope as Novel Structural Requirement for Protein Arginine Rhamnosylation

Author(s):  
Nathaniel Martin ◽  
Marthe Walvoort ◽  
Liubov Yakovlieva ◽  
Thomas Wood ◽  
Johan Kemmink ◽  
...  

<p>Protein <i>N</i>-glycosylation is ubiquitously present in all domains of life, and confers a plethora of functions to the protein including increased solubility, protection from degradation, interaction with receptors, and activation for function. For canonical asparagine glycosylation, the recognition sequence that directs glycosylation at specific asparagine residues is well-established. It generally holds for protein glycosylation that the primary amino acid sequence is most important for substrate recognition. Here we reveal that a recently discovered bacterial enzyme called EarP, that transfers rhamnose to a specific arginine residue in its acceptor protein EF-P, specifically recognizes a β-hairpin loop. Notably, while the rhamnosyltransferase activity of EarP is abolished when presented with linear substrate peptide sequences derived from EF-P <i>in vitro</i>, the enzyme readily glycosylates the same sequence when presented in a cyclized β-hairpin mimic containing an l-Pro-d-Pro motif. Additional studies with other substrate-mimicking cyclic peptides revealed that EarP activity is sensitive to the method used to induce cyclization and in some cases is tolerant to amino acid sequence variation. Using detailed NMR approaches, we established that the active peptide substrates all share some degree of β-hairpin formation, and therefore conclude that the β-hairpin epitope is the major determinant of arginine-rhamnosylation by EarP. Our findings add a novel recognition motif to the existing knowledge on substrate specificity of protein glycosylation, and are expected to inform future identifications of rhamnosylation sites in other protein substrates.</p>

2020 ◽  
Author(s):  
Nathaniel Martin ◽  
Marthe Walvoort ◽  
Liubov Yakovlieva ◽  
Thomas Wood ◽  
Johan Kemmink ◽  
...  

<p>Protein <i>N</i>-glycosylation is ubiquitously present in all domains of life, and confers a plethora of functions to the protein including increased solubility, protection from degradation, interaction with receptors, and activation for function. For canonical asparagine glycosylation, the recognition sequence that directs glycosylation at specific asparagine residues is well-established. It generally holds for protein glycosylation that the primary amino acid sequence is most important for substrate recognition. Here we reveal that a recently discovered bacterial enzyme called EarP, that transfers rhamnose to a specific arginine residue in its acceptor protein EF-P, specifically recognizes a β-hairpin loop. Notably, while the rhamnosyltransferase activity of EarP is abolished when presented with linear substrate peptide sequences derived from EF-P <i>in vitro</i>, the enzyme readily glycosylates the same sequence when presented in a cyclized β-hairpin mimic containing an l-Pro-d-Pro motif. Additional studies with other substrate-mimicking cyclic peptides revealed that EarP activity is sensitive to the method used to induce cyclization and in some cases is tolerant to amino acid sequence variation. Using detailed NMR approaches, we established that the active peptide substrates all share some degree of β-hairpin formation, and therefore conclude that the β-hairpin epitope is the major determinant of arginine-rhamnosylation by EarP. Our findings add a novel recognition motif to the existing knowledge on substrate specificity of protein glycosylation, and are expected to inform future identifications of rhamnosylation sites in other protein substrates.</p>


2001 ◽  
Vol 183 (6) ◽  
pp. 1954-1960 ◽  
Author(s):  
Grit Zarnt ◽  
Thomas Schräder ◽  
Jan R. Andreesen

ABSTRACT The quinohemoprotein tetrahydrofurfuryl alcohol dehydrogenase (THFA-DH) from Ralstonia eutropha strain Bo was investigated for its catalytic properties. The apparentk cat/Km andK i values for several substrates were determined using ferricyanide as an artificial electron acceptor. The highest catalytic efficiency was obtained with n-pentanol exhibiting a k cat/Km value of 788 × 104 M−1 s−1. The enzyme showed substrate inhibition kinetics for most of the alcohols and aldehydes investigated. A stereoselective oxidation of chiral alcohols with a varying enantiomeric preference was observed. Initial rate studies using ethanol and acetaldehyde as substrates revealed that a ping-pong mechanism can be assumed for in vitro catalysis of THFA-DH. The gene encoding THFA-DH from R. eutropha strain Bo (tfaA) has been cloned and sequenced. The derived amino acid sequence showed an identity of up to 67% to the sequence of various quinoprotein and quinohemoprotein dehydrogenases. A comparison of the deduced sequence with the N-terminal amino acid sequence previously determined by Edman degradation analysis suggested the presence of a signal sequence of 27 residues. The primary structure of TfaA indicated that the protein has a tertiary structure quite similar to those of other quinoprotein dehydrogenases.


2020 ◽  
Author(s):  
Qingxiu Zhang ◽  
Lei He ◽  
Mo Chen ◽  
Hui Yang ◽  
Xiaowei Cao ◽  
...  

Abstract Background: Our previous experiments demonstrated that PSD-93 mediates glutamate excitotoxicity induced by ischemic brain injury, which promotes the release of inflammatory cytokines in early ischemic brain injury by activating the NMDA receptor. Glutamate activity is the key to neuronal excitatory toxicity and microglial cell inflammatory response in the joints. However, the underlying mechanisms of how does PSD-93 mediate the dialogue between neurons and microglia in the postsynaptic dense region remain elusive. And CX3 chemokine ligand 1 (CX3CL1) is a chemokine that is specifically expressed in neurons. Its only receptor CX3CR1 is highly expressed in microglia and its main forms are membrane binding and soluble. In this study, we aim to clarify the specific amino acid sequence of the binding of psd-93 and CX3CL1 and investigate role of PSD-93 on regulating the crosstalk between neuron and microglia in acute ischemic stroke. Methods: In this study, male C57BL/6 mice aged 8-12 weeks and weighted 22-26g were applied with Middle Cerebral Artery Occlusion (MCAO) model and randomly divided into different groups. Firstly, co-immunoprecipitation and immunoblotting were used to detect the binding of PSD-93 and CX3CL1 at different time points 3h, 6h, 12h 24h, 48h and 72h following cerebral ischemic/reperfusion. Meanwhile, ELISA was used to investigate the expression of soluble CX3CL1 at the same time points to confirm the relationship between of the expression of soluble CX3CL1 and the combination of PSD-93 and CX3CL1. Secondly, two bait plasmids pSos-PSD-93-full length, pSos-CX3CL1-full length and five mutant plasmids: pMyr-PSD-93-mut1, pMyr-PSD-93-mut2, pMyr-PSD-93-mut3, pMyr-PSD-93-mut4, and pMyr-CX3CL1-mut, were constructed and used a yeast two-hybrid system to screen and identify positive clones and to determine the sequence in which the two proteins bind to each other. Thirdly, the proteins corresponding to the three positive clones obtained in the yeast two-hybrid experiment were used to construct plasmids for transfection of eukaryotic cells and the protein expression binding was verified again by in vitro co-immunoprecipitation. Finally, a specific fusion small peptide Tat-CX3CL1 were designed according to above experiment to inhibit the integration of PSD-93 and CX3CL1 and to explore their role on neuron death following reperfusion. Results: We found that the binding capacity of PSD-93 and CX3CL1 proteins peaked at 6h after ischemia/reperfusion and then decreased gradually. The specific amino acid sequence of PSD-93 and CX3CL1 binding was obtained by yeast double hybridization and in vitro immunoprecipitation. We identified that their binding sites are located in the 420-535 amino acid sequence of PSD-93 and 357-395 amino acid sequence of CX3CL1. And a specific fusion small peptide Tat-CX3CL1 (357-395aa) were designed to inhibit the integration of PSD-93 and CX3CL1 and perform neuroprotection on neuron death following reperfusion. Conclusions: Our results suggest that PSD-93 promotes the formation of its soluble form by binding to CX3CL1, which is recruited to the surface of microglia to bind to CX3CR1, thereby activating microglia to initiate inflammation. Thus, specific blockade of PSD-93-CX3CL1 coupling can reduce ischemia-reperfusion induced neuronal cell death, which provide a new target to treat ischemic stroke.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mekdes Megeressa ◽  
Bushra Siraj ◽  
Shamshad Zarina ◽  
Aftab Ahmed

AbstractNon-specific lipid transfer proteins (nsLTPs) are cationic proteins involved in intracellular lipid shuttling in growth and reproduction, as well as in defense against pathogenic microbes. Even though the primary and spatial structures of some nsLTPs from different plants indicate their similar features, they exhibit distinct lipid-binding specificities signifying their various biological roles that dictate further structural study. The present study determined the complete amino acid sequence, in silico 3D structure modeling, and the antiproliferative activity of nsLTP1 from fennel (Foeniculum vulgare) seeds. Fennel is a member of the family Umbelliferae (Apiaceae) native to southern Europe and the Mediterranean region. It is used as a spice medicine and fresh vegetable. Fennel nsLTP1 was purified using the combination of gel filtration and reverse-phase high-performance liquid chromatography (RP-HPLC). Its homogeneity was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. The purified nsLTP1 was treated with 4-vinyl pyridine, and the modified protein was then digested with trypsin. The complete amino acid sequence of nsLTP1 established by intact protein sequence up to 28 residues, overlapping tryptic peptides, and cyanogen bromide (CNBr) peptides. Hence, it is confirmed that fennel nsLTP1 is a 9433 Da single polypeptide chain consisting of 91 amino acids with eight conserved cysteines. Moreover, the 3D structure is predicted to have four α-helices interlinked by three loops and a long C-terminal tail. The lipid-binding property of fennel nsLTP1 is examined in vitro using fluorescent 2-p-toluidinonaphthalene-6-sulfonate (TNS) and validated using a molecular docking study with AutoDock Vina. Both of the binding studies confirmed the order of binding efficiency among the four studied fatty acids linoleic acid > linolenic acid > Stearic acid > Palmitic acid. A preliminary screening of fennel nsLTP1 suppressed the growth of MCF-7 human breast cancer cells in a dose-dependent manner with an IC50 value of 6.98 µM after 48 h treatment.


1977 ◽  
Author(s):  
F.J. Morgan ◽  
G.S. Begg ◽  
C.N. Chesterman

The amino acid sequence of human platelet factor 4 (PF4) has been studied. PF4 is a platelet specific protein with antiheparin activity, released from platelets as a proteoglycan complex, whose measurement may provide an important index of platelet activation both in vivo and in vitro. These studies were undertaken to characterize fully the PF4 molecule. PF4 is a stable tetramer, composed of identical subunits, each with a molecular weight based on the sequence studies of approx. 7,770. Each PF4 subunit contains 69 amino acids, including 4 half-cystine (# 10, 12, 36, 37), one tyrosine (# 59), 3 arginine and 8 lysine, but no methionine, phenylalanine or tryptophan residues. The basic residues are predominantly in the C-terminal region. The tryptic peptides were aligned after studies which included tryptic digestion of citraconylated RCM-PF4, and automated Edman degradation of RCM-PF4 and citraconylated tryptic peptides. No glycopeptides were detected. This structural information should enable clear distinction to be made between PF4 and other platelet proteins such as β thromboglobulin. The provisional amino acid sequence of each subunit is:Glu-Ala-Glu-Glu-Asp-Gly-Asp-Leu-Gln-Cys-Leu-Cys-Val-Lys-Thr-Thr-Ser-Gln-Val-Arg-Pro-Arg-His-Ile-Thr-Ser-Leu-Glu-Val-Ile-Lys-Ala-Gly-Pro-His-Cys-Cys-Pro-Thr-Ala-Gln-Ile-Leu-Ala-Thr-Leu-Lys-Asn-Gly-Arg-Lys-Ile-Pro-Leu-Asp-Leu-Gln-Ala-Tyr-Leu-Lys-Ile-Lys(Lys, Lys, Ser, Glx, Leu, Leu)


Weed Science ◽  
2019 ◽  
Vol 67 (3) ◽  
pp. 281-287 ◽  
Author(s):  
Jiapeng Fang ◽  
Tingting Liu ◽  
Yuhua Zhang ◽  
Jun Li ◽  
Liyao Dong

AbstractBarnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] is acknowledged to be the most troublesome weed in rice fields in Anhui and Jiangsu provinces of China. It cannot be effectively controlled using certain acetolactate synthase (ALS)-inhibiting herbicides, including penoxsulam. Echinochloa crus-galli samples with suspected resistance to penoxsulam were collected to identify the target site–based mechanism underlying this resistance. Populations AXXZ-2 and JNRG-2 showed 33- and 7.3-fold resistance to penoxsulam, respectively, compared with the susceptible JLGY-3 population. Cross-resistance to other ALS inhibitors was reported in AXXZ-2 but not in JNRG-2, and occasionally showed higher sensitivity than JLGY-3. In vitro ALS activity assays revealed that penoxsulam concentrations required to inhibit 50% of ALS activity were 11 and 5.2 times greater in AXXZ-2 and JNRG-2, respectively, than in JLGY-3. DNA and predicted amino acid sequence analyses of ALS revealed Ala-205-Val and Ala-122-Gly substitutions in AXXZ-2 and JNRG-2, respectively. Our results indicate that these substitutions in ALS are at least partially responsible for resistance to penoxsulam.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Maren Kirstin Schuhmacher ◽  
Serap Beldar ◽  
Mina S. Khella ◽  
Alexander Bröhm ◽  
Jan Ludwig ◽  
...  

AbstractSETD2 catalyzes methylation at lysine 36 of histone H3 and it has many disease connections. We investigated the substrate sequence specificity of SETD2 and identified nine additional peptide and one protein (FBN1) substrates. Our data showed that SETD2 strongly prefers amino acids different from those in the H3K36 sequence at several positions of its specificity profile. Based on this, we designed an optimized super-substrate containing four amino acid exchanges and show by quantitative methylation assays with SETD2 that the super-substrate peptide is methylated about 290-fold more efficiently than the H3K36 peptide. Protein methylation studies confirmed very strong SETD2 methylation of the super-substrate in vitro and in cells. We solved the structure of SETD2 with bound super-substrate peptide containing a target lysine to methionine mutation, which revealed better interactions involving three of the substituted residues. Our data illustrate that substrate sequence design can strongly increase the activity of protein lysine methyltransferases.


1977 ◽  
Vol 74 (4) ◽  
pp. 1358-1362 ◽  
Author(s):  
A. W. Strauss ◽  
A. M. Donohue ◽  
C. D. Bennett ◽  
J. A. Rodkey ◽  
A. W. Alberts

Sign in / Sign up

Export Citation Format

Share Document