scholarly journals Biomechanical and Biological Performances of Diels-Alder Crosslinked Thermogelling Bioink

Author(s):  
Lukas Hahn ◽  
Matthias Beudert ◽  
Marcus Gutmann ◽  
Larissa Keßler ◽  
Philipp Stahlhut ◽  
...  

Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study a well-known post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel was functionalized with RGD-peptides using thiol-maleimide chemistry and growth as well as morphology of fibroblast seeded on top of the hydrogels confirmed the cell adhesion facilitated by the peptides. Finally, bioink formulations were tested for biocompatibility by incorporating fibroblasts homogenously inside polymer solution pre-printing and exhibited good cytocompatibility after the printing process and crosslinking. The established bioink system combining a two-step approach by physical precursor gelation followed by additional chemical stabilization offers a broad versatility for further biomechanical adaptation or bioresponsive peptide modification.

2021 ◽  
Author(s):  
Lukas Hahn ◽  
Matthias Beudert ◽  
Marcus Gutmann ◽  
Larissa Keßler ◽  
Philipp Stahlhut ◽  
...  

Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study a well-known post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel was functionalized with RGD-peptides using thiol-maleimide chemistry and growth as well as morphology of fibroblast seeded on top of the hydrogels confirmed the cell adhesion facilitated by the peptides. Finally, bioink formulations were tested for biocompatibility by incorporating fibroblasts homogenously inside polymer solution pre-printing and exhibited good cytocompatibility after the printing process and crosslinking. The established bioink system combining a two-step approach by physical precursor gelation followed by additional chemical stabilization offers a broad versatility for further biomechanical adaptation or bioresponsive peptide modification.


Biomaterials ◽  
2005 ◽  
Vol 26 (15) ◽  
pp. 2333-2341 ◽  
Author(s):  
E. Lieb ◽  
M. Hacker ◽  
J. Tessmar ◽  
L.A. Kunz-Schughart ◽  
J. Fiedler ◽  
...  

1994 ◽  
Vol 124 (3) ◽  
pp. 373-380 ◽  
Author(s):  
E Koivunen ◽  
B Wang ◽  
E Ruoslahti

Our previous studies showed that the alpha 5 beta 1 integrin selects cysteine pair-containing RGD peptides from a phage display library based on a random hexapeptide. We have therefore searched for more selective peptides for this integrin using a larger phage display library, where heptapeptides are flanked by cysteine residues, thus making the inserts potentially cyclic. Most of the phage sequences that bound to alpha 5 beta 1 (69 of 125) contained the RGD motif. Some of the heptapeptides contained an NGR motif. As the NGR sequence occurs in the cell-binding region of the fibronectin molecule, this sequence could contribute to the specific recognition of fibronectin by alpha 5 beta 1. Selection for high affinity peptides for alpha 5 beta 1 surprisingly yielded a sequence RRETAWA that does not bear obvious resemblance to known integrin ligand sequences. The synthetic cyclic peptide GACRRETAWACGA (*CRRETAWAC*) was a potent inhibitor of alpha 5 beta 1-mediated cell attachment to fibronectin. This peptide is nearly specific for the alpha 5 beta 1 integrin, because much higher concentrations were needed to inhibit the alpha v beta 1 integrin, and there was no effect on alpha v beta 3- and alpha v beta 5-mediated cell attachment to vitronectin. The peptide also did not bind to the alpha IIb beta 3 integrin. *CRRETAWAC* appears to interact with the same or an overlapping binding site in alpha 5 beta 1 as RGD, because cell attachment to *CRRETAWAC* coated on plastic was divalent cation dependent and could be blocked by an RGD-containing peptide. These results reveal a novel binding specificity in the alpha 5 beta 1 integrin.


1988 ◽  
Vol 107 (5) ◽  
pp. 1835-1843 ◽  
Author(s):  
R K Kamboj ◽  
L M Wong ◽  
T Y Lam ◽  
C H Siu

At the aggregation stage of Dictyostelium discoideum development, a cell surface glycoprotein of Mr 80,000 (gp80) has been found to mediate the EDTA-resistant type of cell-cell adhesion via homophilic interaction (Siu, C.-H., A. Cho, and A. H. C. Choi. 1987. J. Cell Biol. 105:2523-2533). To investigate the structure-function relationships of gp80, we have isolated full length cDNA clones for gp80 and determined the DNA sequence. The deduced structure of gp80 showed three major domains. An amino-terminal globular domain composed of the bulk of the protein is supported by a short stalk region, which is followed by a membrane anchor at the carboxy terminus. Structural analysis suggested that the cell-binding domain of gp80 resides within the globular domain near the amino terminus. To investigate the relationship of the cell-binding activity to this region of the polypeptide, three protein A/gp80 (PA80) gene fusions were constructed using the expression vector pRIT2T. These PA80 fusion proteins were assayed for their ability to bind to aggregation stage cells. Binding of 125I-labeled fusion proteins PA80I (containing the Val123 to Ile514 fragment of gp80) and PA80II (Val123 to Ala258) was dosage dependent and could be inhibited by precoating cells with the cell cohesion-blocking mAb 80L5C4. On the other hand, there was no appreciable binding of PA80III (Ile174 to Ile514) to cells. Reassociation of cells was significantly inhibited in the presence of PA80I or PA80II. In addition, 125I-labeled PA80II exhibited homophilic interaction with immobilized PA80I, PA80II, or gp80. The results of these studies lead to the mapping of a cell-binding domain in the region between Val123 and Leu173 of gp80 and provide direct evidence that the cell-binding activity of gp80 resides in the protein moiety.


2014 ◽  
Vol 47 (8) ◽  
pp. 2604-2615 ◽  
Author(s):  
Gregory Molev ◽  
Yijie Lu ◽  
Kris Sanghyun Kim ◽  
Ingrid Chab Majdalani ◽  
Gerald Guerin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document