scholarly journals Operando SAXS Study of a Pt/C Fuel Cell Catalyst with an X-ray Laboratory Source

Author(s):  
Johanna Schröder ◽  
Jonathan Quinson ◽  
Jacob J. K. Kirkensgaard ◽  
Matthias Arenz

Small angle X-ray scattering (SAXS) is a powerful technique to investigate the degradation of catalyst materials. Ideally such investigations are performed <i>operando</i>, i.e., during a catalytic reaction. An example of <i>operando </i>measurements is to observe the degradation of fuel cell catalysts during an accelerated stress test (AST). Fuel cell catalysts consist of Pt or Pt alloy nanoparticles (NPs) supported on a high surface area carbon. A key challenge of operando SAXS measurements is a proper background subtraction of the carbon support to extract the information of the size distribution of the Pt NPs as a function of the AST treatment. Typically, such operando studies require the use of synchrotron facilities. The background measurement can then be performed by anomalous SAXS (aSAXS) or in a grazing incidence con-figuration. In this work we present a proof-of-concept study demonstrating the use of a laboratory X-ray diffractometer for <i>operando </i>SAXS. Data acquisition of <i>operando </i>SAXS with a laboratory X-ray diffractometer is desirable due to the general challenging and limited accessibility of synchrotron facilities. They become even more crucial under the ongoing and foreseen restrictions related to the COVID-19 pandemic. Although, it is not the aim to completely replace synchrotron-based studies, it is shown that the background subtraction can be achieved by a simple experimental consideration in the setup that can ultimately facilitate <i>operando </i>SAXS measurements at a synchrotron facility. <br>

2021 ◽  
Author(s):  
Johanna Schröder ◽  
Jonathan Quinson ◽  
Jacob J. K. Kirkensgaard ◽  
Matthias Arenz

Small angle X-ray scattering (SAXS) is a powerful technique to investigate the degradation of catalyst materials. Ideally such investigations are performed <i>operando</i>, i.e., during a catalytic reaction. An example of <i>operando </i>measurements is to observe the degradation of fuel cell catalysts during an accelerated stress test (AST). Fuel cell catalysts consist of Pt or Pt alloy nanoparticles (NPs) supported on a high surface area carbon. A key challenge of operando SAXS measurements is a proper background subtraction of the carbon support to extract the information of the size distribution of the Pt NPs as a function of the AST treatment. Typically, such operando studies require the use of synchrotron facilities. The background measurement can then be performed by anomalous SAXS (aSAXS) or in a grazing incidence con-figuration. In this work we present a proof-of-concept study demonstrating the use of a laboratory X-ray diffractometer for <i>operando </i>SAXS. Data acquisition of <i>operando </i>SAXS with a laboratory X-ray diffractometer is desirable due to the general challenging and limited accessibility of synchrotron facilities. They become even more crucial under the ongoing and foreseen restrictions related to the COVID-19 pandemic. Although, it is not the aim to completely replace synchrotron-based studies, it is shown that the background subtraction can be achieved by a simple experimental consideration in the setup that can ultimately facilitate <i>operando </i>SAXS measurements at a synchrotron facility. <br>


RSC Advances ◽  
2014 ◽  
Vol 4 (29) ◽  
pp. 14971 ◽  
Author(s):  
Jozsef Speder ◽  
Lena Altmann ◽  
Marcus Bäumer ◽  
Jacob J. K. Kirkensgaard ◽  
Kell Mortensen ◽  
...  

2018 ◽  
Vol 11 (4) ◽  
pp. 988-994 ◽  
Author(s):  
Masanori Inaba ◽  
Anders Westergaard Jensen ◽  
Gustav Wilhelm Sievers ◽  
María Escudero-Escribano ◽  
Alessandro Zana ◽  
...  

In this work, we introduce the application of gas diffusion electrodes (GDE) for benchmarking the electrocatalytic performance of high surface area fuel cell catalysts.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1456
Author(s):  
Yujie Fu ◽  
You Zhang ◽  
Qi Xin ◽  
Zhong Zheng ◽  
Yu Zhang ◽  
...  

Chlorinated volatile organic compounds (CVOCs) are vital environmental concerns due to their low biodegradability and long-term persistence. Catalytic combustion technology is one of the more commonly used technologies for the treatment of CVOCs. Catalysts with high low-temperature activity, superior selectivity of non-toxic products, and resistance to chlorine poisoning are desirable. Here we adopted a plasma treatment method to synthesize a tin-doped titania loaded with ruthenium dioxide (RuO2) catalyst, possessing enhanced activity (T90%, the temperature at which 90% of dichloromethane (DCM) is decomposed, is 262 °C) compared to the catalyst prepared by the conventional calcination method. As revealed by transmission electron microscopy, X-ray diffraction, N2 adsorption, X-ray photoelectron spectroscopy, and hydrogen temperature-programmed reduction, the high surface area of the tin-doped titania catalyst and the enhanced dispersion and surface oxidation of RuO2 induced by plasma treatment were found to be the main factors determining excellent catalytic activities.


2017 ◽  
Vol 75 (10) ◽  
pp. 2403-2411 ◽  
Author(s):  
Zongxue Yu ◽  
Qi Chen ◽  
Liang Lv ◽  
Yang Pan ◽  
Guangyong Zeng ◽  
...  

The environmental applications of graphene oxide and β-cyclodextrin (β-CD) have attracted great attention since their first discovery. Novel nanocomposites were successfully prepared by using an esterification reaction between β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane grafted graphene oxide (β-CD/GPTMS/GO). The β-CD/GPTMS/GO nanocomposites were used to remove the Cu2+ from aqueous solutions. The characteristics of β-CD/GPTMS/GO were detected by scanning electron microscopy (SEM), Fourier transform infrared, X-ray diffraction (XRD), thermogravimetric analysis (TG) and energy dispersive X-ray (EDX). The dispersibility of graphene oxide was excellent due to the addition of β-CD. The adsorption isotherms data obtained at the optimum pH 7 were fitted by Langmuir isotherm model. The excellent adsorption properties of β-CD/GPTMS/GO for Cu2+ ions could be attributed to the apolar cavity structure of β-CD, the high surface area and abundant functional groups on the surface of GO. The adsorption patterns of β-CD/GPTMS/GO were electrostatic attraction, formation of host-guest inclusion complexes and the ion exchange adsorption. The efficient adsorption of β-CD/GPTMS/GO for Cu2+ ions suggested that these novel nanocomposites may be ideal candidates for removing other cation pollutants from waste water.


2019 ◽  
Vol 74 (3) ◽  
pp. 259-263 ◽  
Author(s):  
M. Shamshi Hassan

AbstractHierarchical bismuth vanadate (BiVO4) nano-knitted hollow cages have been synthesized by simple hydrothermal method and characterized by scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectrometer, Fourier transform infrared, UV-Vis, and Raman. The photodegradation efficiency of BiVO4 nanocage for universally used methylene blue dye. The BiVO4 hollow nanostructure demonstrated better photocatalytic competence in dye degradation as compared to the commercial TiO2 powders (P25). The excellent dye degradation can be certified to the high crystallisation of monoclinic BiVO4 and hollow nanostructure, which leads to high surface area and small bandgap energy of 2.44 eV.


2014 ◽  
Vol 11 (5) ◽  
pp. 6815-6844
Author(s):  
S. C. Löhr ◽  
M. J. Kennedy

Abstract. Organic carbon (OC) enrichment in sediments deposited during Oceanic Anoxic Events (OAEs) is commonly attributed to elevated productivity and marine anoxia. We find that OC enrichment in the late Cenomanian aged OAE2 at Demerara Rise was controlled by co-occurrence of anoxic bottom-water, sufficient productivity to saturate available mineral surfaces and variable deposition of high surface area detrital smectite clay. Redox indicators show consistently oxygen-depleted conditions, while a strong correlation between OC concentration and sediment mineral surface area (R2=0.92) occurs across a range of TOC values from 9–33%. X-ray diffraction data indicates intercalation of OC in smectite interlayers while electron, synchrotron infrared and X-ray microscopy show an intimate association between clay minerals and OC, consistent with preservation of OC as organomineral nanocomposites and aggregates rather than discrete, μm-scale pelagic detritus. Since the consistent ratio between TOC and mineral surface area suggests that excess OC relative to surface area is lost, we propose that it is the varying supply of smectite that best explains variable organic enrichment against a backdrop of continuous anoxia, which is conducive to generally high TOC during OAE2 at Demerara Rise. Smectitic clays are unique in their ability to form stable organomineral nanocomposites and aggregates that preserve organic matter, and are common weathering products of continental volcanic deposits. An increased flux of smectite coinciding with high carbon burial is consistent with evidence for widespread volcanism during OAE2, so that organomineral carbon burial may represent a potential feedback to volcanic degassing of CO2.


2013 ◽  
Vol 545 ◽  
pp. 77-81
Author(s):  
Korakot Sombatmankhong ◽  
Adrian C. Fisher

One method of increasing number of reaction sites was by the introduction of a porous structure into the electrodes to provide a high surface area for catalyst deposition. This work focused on the development of a method for the fabrication of a porous polypyrrole electrode; a mixture of two monomers (i.e. pyrrole and methylene blue) was simultaneously electropolymerised and one of which was selectively removed from the composite film by solvent extraction. The porous polypyrrole had a suitably porous structure whilst maintaining excellent electrical properties. The application of this novel material to miniaturized fuel cells was shown to have improved power density of 2-fold and 3-fold higher than bulk polypyrrole and bare gold electrodes respectively.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 354 ◽  
Author(s):  
Cassia Boyadjian ◽  
Leon Lefferts

In this work, molybdena-promoted Li/MgO is studied as a catalyst for the oxidative conversion of n-hexane. The structure of the catalysts is investigated with X-ray Diffraction (XRD) and Raman spectroscopy. The MoO3/Li/MgO catalyst contains three types of molybdena-containing species, the presence of which depend on molybdena loading. At low Mo/Li ratios (i) isolated dispersed [MoO4]2− anionic species are observed. At high Mo/Li ratios, the formation of crystalline lithium molybdate phases such as (ii) monomeric Li2MoO4 and tentatively (iii) polymeric Li2Mo4O13 are concluded. The presence of these lithium molybdates diminishes the formation of Li2CO3 in the catalyst. Subsequently, the catalyst maintains high surface area and stability with time-on-stream during oxidative conversion. Molybdena loading as low as 0.5 wt % is sufficient to induce these improvements, maintaining the non-redox characteristics of the catalyst, whereas higher loadings enhance deep oxidation and oxidative dehydrogenation reactions. Promoting a Li/MgO catalyst with 0.5 wt % MoO3 is thus efficient for selective conversion of n-hexane to alkenes, giving alkene yield up to 24% as well as good stability.


Sign in / Sign up

Export Citation Format

Share Document