scholarly journals Chemical Tuning of NaSICON Surfaces for Fast-Charging Na Metal Solid-State Batteries

Author(s):  
Edouard Querel ◽  
Ieuan Seymour ◽  
Andrea Cavallaro ◽  
Qianli Ma ◽  
Frank Tietz ◽  
...  

<p>Solid-state batteries (SSBs) with alkali metal anodes hold great promise as energetically dense and safe alternatives to conventional Li-ion cells. Whilst, in principle, SSBs have the additional advantage of offering virtually unlimited plating current densities, fast charges have so far only been achieved through sophisticated interface engineering strategies. Here, we reveal that such interface engineering can be easily achieved by tuning the chemistry of NaSICON solid electrolytes (Na<sub>3.4</sub>Zr<sub>2</sub>Si<sub>2.4</sub>P<sub>0.6</sub>O<sub>12</sub>) and taking advantage of the thermodynamic stabilization of a Na<sub>3</sub>PO<sub>4</sub> layer on their surface upon thermal activation. The optimized planar Na|NZSP interfaces are characterized by their exceptionally low interface resistances (down to 0.1 Ω cm<sup>2 </sup>at room temperature) and, more importantly, by their tolerance to large plating current densities (up to 10 mA cm<sup>-2</sup>) even for extended cycling periods of 30 minutes (corresponding to an areal capacity 5 mAh cm<sup>-2</sup>).</p>

2021 ◽  
Author(s):  
John Lewis ◽  
Chanhee Lee ◽  
Yuhgene Liu ◽  
Sang Yun Han ◽  
Dhruv Prakash ◽  
...  

Solid-state batteries (SSBs) with lithium metal anodes offer higher specific energy than conventional lithium-ion batteries, but they must utilize areal capacities >3 mAh cm-2 and cycle at current densities >3 mA cm-2 to achieve commercial viability. Substantial research effort has focused on increasing rate capabilities of SSBs by mitigating detrimental processes such as lithium filament penetration. Less attention has been paid to understanding how areal capacity impacts plating/stripping behavior, despite the importance of areal capacity for achieving high specific energy. Here, we investigate and quantify the relationships among areal capacity, current density, and plating/stripping stability using both symmetric and full-cell configurations with a sulfide solid-state electrolyte (Li6PS5Cl). We show that unstable deposition and short circuiting readily occur at rates much lower than the measured critical current density when a sufficient areal capacity is passed. A systematic study of continuous plating under different electrochemical conditions reveals average “threshold capacity” values at different current densities, beyond which short circuiting occurs. Cycling cells below this threshold capacity significantly enhances cell lifetime, enabling stable symmetric cell cycling at 2.2 mA cm-2 without short circuiting. Finally, we show that full cells also exhibit threshold capacity behavior, but they tend to short circuit at lower current densities and areal capacities. Our results quantify the effects of transferred capacity and demonstrate the importance of using realistic areal capacities in experiments to develop viable solid-state batteries.


2021 ◽  
Author(s):  
Kostiantyn V. Kravchyk ◽  
Dogan Tarik Karabay ◽  
Maksym V. Kovalenko

Abstract Replacement of Li-ion liquid-state electrolytes by solid-state counterparts in a Li-ion battery (LIB) is a major research objective as well as an urgent priority for the industry, as it enables the use of a Li metal anode and provides new opportunities to realize safe, non-flammable, and temperature-resilient batteries. Among the plethora of solid-state electrolytes (SSEs) investigated, garnet-type Li-ion electrolytes based on cubic Li7La3Zr2O12 (LLZO) are considered the most appealing candidates for the development of future solid-state batteries because of their low electronic conductivity of ca. 10−8 S cm−1 (RT) and a wide electrochemical operation window of 0 ‒ 6 V vs. Li+/Li. However, high LLZO density (5.1 g cm-3) and its lower level of Li-ion conductivity (up to 1 mS cm−1 at RT) compared to liquid electrolytes (1.28 g cm-3; ca. 10 mS cm−1 at RT) still raise the question as to the feasibility of using solely LLZO as an electrolyte for achieving competitive energy and power densities. In this work, we analyzed the energy densities of Li-garnet all-solid-state batteries based solely on LLZO SSE by modeling their Ragone plots using LiCoO2 as the model cathode material. This assessment allowed us to identify values of the LLZO thickness, cathode areal capacity, and LLZO content in the solid-state cathode required to match the energy density of conventional lithium-ion batteries (ca. 180 Wh kg-1 and 497 Wh L-1) at the power densities of 200 W kg-1 and 600 W L-1, corresponding to ca. 1h of battery discharge time (1C). We then discuss key challenges in the practical deployment of LLZO SSE in the fabrication of Li-garnet all-solid-state batteries.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 946
Author(s):  
Qianyi Yang ◽  
Fuqiang Lu ◽  
Yulin Liu ◽  
Yijie Zhang ◽  
Xiujuan Wang ◽  
...  

Solid electrolytes with high Li-ion conductivity and electrochemical stability are very important for developing high-performance all-solid-state batteries. In this work, Li2(BH4)(NH2) is nanoconfined in the mesoporous silica molecule sieve (SBA-15) using a melting–infiltration approach. This electrolyte exhibits excellent Li-ion conduction properties, achieving a Li-ion conductivity of 5.0 × 10−3 S cm−1 at 55 °C, an electrochemical stability window of 0 to 3.2 V and a Li-ion transference number of 0.97. In addition, this electrolyte can enable the stable cycling of Li|Li2(BH4)(NH2)@SBA-15|TiS2 cells, which exhibit a reversible specific capacity of 150 mAh g−1 with a Coulombic efficiency of 96% after 55 cycles.


Author(s):  
François Larouche ◽  
George P. Demopoulos ◽  
Kamyab Amouzegar ◽  
Patrick Bouchard ◽  
Karim Zaghib

2020 ◽  
Vol 8 (37) ◽  
pp. 19603-19611
Author(s):  
Adam R. Symington ◽  
John Purton ◽  
Joel Statham ◽  
Marco Molinari ◽  
M. Saiful Islam ◽  
...  

Solid electrolytes for all-solid-state batteries are generating considerable research interest as a means to improving their safety, stability and performance.


2020 ◽  
Vol MA2020-02 (1) ◽  
pp. 16-16
Author(s):  
Karim Zaghib ◽  
Wen Zhu ◽  
Shirin Kaboli ◽  
Hendrix Demers ◽  
Michel Trudeau ◽  
...  

2015 ◽  
Vol 3 (1) ◽  
pp. 274-280 ◽  
Author(s):  
Rajesh Thomas ◽  
G. Mohan Rao

All solid state batteries are essential candidate for miniaturizing the portable electronics devices.


2017 ◽  
Vol 9 (14) ◽  
pp. 12461-12468 ◽  
Author(s):  
Jian-Fang Wu ◽  
Wei Kong Pang ◽  
Vanessa K. Peterson ◽  
Lu Wei ◽  
Xin Guo

2018 ◽  
Vol 140 (22) ◽  
pp. 7044-7044 ◽  
Author(s):  
James A. Dawson ◽  
Pieremanuele Canepa ◽  
Theodosios Famprikis ◽  
Christian Masquelier ◽  
M. Saiful Islam

2020 ◽  
Author(s):  
Jordi Sastre ◽  
Moritz H. Futscher ◽  
Lea Pompizi ◽  
Abdessalem Aribia ◽  
Agnieszka Priebe ◽  
...  

Lithium garnet Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) electrolyte is a potential candidate for the development of solid-state batteries with lithium metal as high-capacity anode. But ceramic LLZO in the form of pellets or polycrystalline films can still suffer from lithium dendrite penetration because of surface and bulk inhomogeneities and grain boundaries with non-negligible electronic conductivity. In contrast, the amorphous phase of LLZO (aLLZO) possesses a grain-boundary-free microstructure with moderate ionic conductivity (10<sup>-7</sup> S cm<sup>-1</sup>) and high electronic insulation (10<sup>-14</sup> S cm<sup>-1</sup>), which in the form of thin coatings can offer resistance to lithium dendrite growth. We explore the electrochemical properties and applications of aLLZO ultrathin films prepared by sputtering deposition. The defect-free and conformal nature of the films enables microbatteries with an electrolyte thickness as low as 70 nm, which withstand charge-discharge at 0.2 mA cm<sup>-2</sup> for over 500 cycles. In Li/aLLZO/Li symmetric cells, plating-stripping at current densities up to 3.2 mA cm<sup>-2</sup> shows no signs of lithium penetration. Finally, we show that the application of aLLZO as a coating on LLZO ceramic pellets significantly impedes the formation of Li dendrites.


Sign in / Sign up

Export Citation Format

Share Document