scholarly journals Uptake, Trapping, and Release of Organometallic Cations in Redox-Active Cationic Hosts

Author(s):  
Iram F. Mansoor ◽  
Kaitlyn Dutton ◽  
Daniel A. Rothschild ◽  
Richard C. Remsing ◽  
Mark C. Lipke

The host-guest chemistry of metal-organic nanocages is typically driven by thermodynamically favorable interactions with their guests, such that uptake and release of guests can be controlled by switching affinity on/off. Herein, we achieve this effect by reducing porphyrin-walled cationic nanoprisms <b>1a<sup>12+</sup></b> and <b>1b<sup>12+</sup></b> to zwitterionic states that rapidly uptake organometallic cations Cp*<sub>2</sub>Co<sup>+</sup> or Cp<sub>2</sub>Co<sup>+</sup>. Cp*<sub>2</sub>Co<sup>+</sup> binds strongly (<i>K</i><sub>a</sub> = 1.3 x 10<sup>3</sup> M<sup>−1</sup>) in the neutral state <b>1a<sup>0</sup></b> of host <b>1a<sup>12+</sup></b>, which has its three porphyrin walls doubly reduced and its six (bipy)Pt<sup>2+</sup> linkers singly reduced. The less-reduced states of the host <b>1a<sup>3+</sup></b> and <b>1a<sup>9+</sup></b> also bind Cp*<sub>2</sub>Co<sup>+</sup>, though with lower affinities. The smaller Cp<sub>2</sub>Co<sup>+</sup> cation binds strongly (<i>K</i><sub>a</sub> = 1.7 x 10<sup>3</sup> M<sup>-1</sup>) in the 3 e<sup>−</sup> reduced state <b>1b<sup>9+</sup></b> of (tmeda)Pt<sup>2+</sup> linked host <b>1b<sup>12+</sup></b>. Upon reoxidation of the hosts with Ag<sup>+</sup>, the guests become trapped to provide unprecedented metastable cation-in-cation complexes <b>Cp*<sub>2</sub>Co<sup>+</sup>@1a<sup>12+</sup> </b>and <b>Cp<sub>2</sub>Co<sup>+</sup>@1b<sup>12+</sup></b> that persist for >1 month. Thus, dramatic kinetic effects reveal a way to confine the guests in thermodynamically unfavorable environments. Experimental and DFT studies indicate that PF<sub>6</sub><sup>−</sup> anions kinetically stabilize <b>Cp*<sub>2</sub>Co<sup>+</sup>@1a<sup>12+</sup> </b>through electrostatic interactions and by influencing conformational changes of the host that open and close its apertures. However, when <b>Cp*<sub>2</sub>Co<sup>+</sup>@1a<sup>12+</sup> </b>was prepared using ferrocenium (Fc<sup>+</sup>) instead of Ag<sup>+</sup> to reoxidize the host, dissociation was accelerated >200-fold even though neither Fc<sup>+</sup> nor Fc have any competing affinity for <b>1a<sup>12+</sup></b>. This finding shows that metastable host-guest complexes can respond to subtler stimuli than are required to induce guest release from thermodynamically favorable complexes.

2021 ◽  
Author(s):  
Iram F. Mansoor ◽  
Kaitlyn Dutton ◽  
Daniel A. Rothschild ◽  
Richard C. Remsing ◽  
Mark C. Lipke

The host-guest chemistry of metal-organic nanocages is typically driven by thermodynamically favorable interactions with their guests, such that uptake and release of guests can be controlled by switching affinity on/off. Herein, we achieve this effect by reducing porphyrin-walled cationic nanoprisms <b>1a<sup>12+</sup></b> and <b>1b<sup>12+</sup></b> to zwitterionic states that rapidly uptake organometallic cations Cp*<sub>2</sub>Co<sup>+</sup> or Cp<sub>2</sub>Co<sup>+</sup>. Cp*<sub>2</sub>Co<sup>+</sup> binds strongly (<i>K</i><sub>a</sub> = 1.3 x 10<sup>3</sup> M<sup>−1</sup>) in the neutral state <b>1a<sup>0</sup></b> of host <b>1a<sup>12+</sup></b>, which has its three porphyrin walls doubly reduced and its six (bipy)Pt<sup>2+</sup> linkers singly reduced. The less-reduced states of the host <b>1a<sup>3+</sup></b> and <b>1a<sup>9+</sup></b> also bind Cp*<sub>2</sub>Co<sup>+</sup>, though with lower affinities. The smaller Cp<sub>2</sub>Co<sup>+</sup> cation binds strongly (<i>K</i><sub>a</sub> = 1.7 x 10<sup>3</sup> M<sup>-1</sup>) in the 3 e<sup>−</sup> reduced state <b>1b<sup>9+</sup></b> of (tmeda)Pt<sup>2+</sup> linked host <b>1b<sup>12+</sup></b>. Upon reoxidation of the hosts with Ag<sup>+</sup>, the guests become trapped to provide unprecedented metastable cation-in-cation complexes <b>Cp*<sub>2</sub>Co<sup>+</sup>@1a<sup>12+</sup> </b>and <b>Cp<sub>2</sub>Co<sup>+</sup>@1b<sup>12+</sup></b> that persist for >1 month. Thus, dramatic kinetic effects reveal a way to confine the guests in thermodynamically unfavorable environments. Experimental and DFT studies indicate that PF<sub>6</sub><sup>−</sup> anions kinetically stabilize <b>Cp*<sub>2</sub>Co<sup>+</sup>@1a<sup>12+</sup> </b>through electrostatic interactions and by influencing conformational changes of the host that open and close its apertures. However, when <b>Cp*<sub>2</sub>Co<sup>+</sup>@1a<sup>12+</sup> </b>was prepared using ferrocenium (Fc<sup>+</sup>) instead of Ag<sup>+</sup> to reoxidize the host, dissociation was accelerated >200-fold even though neither Fc<sup>+</sup> nor Fc have any competing affinity for <b>1a<sup>12+</sup></b>. This finding shows that metastable host-guest complexes can respond to subtler stimuli than are required to induce guest release from thermodynamically favorable complexes.


2015 ◽  
Vol 290 (34) ◽  
pp. 20804-20814 ◽  
Author(s):  
Sonya E. Neal ◽  
Deepa V. Dabir ◽  
Heather L. Tienson ◽  
Darryl M. Horn ◽  
Kathrin Glaeser ◽  
...  

A redox-regulated import pathway consisting of Mia40 and Erv1 mediates the import of cysteine-rich proteins into the mitochondrial intermembrane space. Mia40 is the oxidoreductase that inserts two disulfide bonds into the substrate simultaneously. However, Mia40 has one redox-active cysteine pair, resulting in ambiguity about how Mia40 accepts numerous electrons during substrate oxidation. In this study, we have addressed the oxidation of Tim13 in vitro and in organello. Reductants such as glutathione and ascorbate inhibited both the oxidation of the substrate Tim13 in vitro and the import of Tim13 and Cmc1 into isolated mitochondria. In addition, a ternary complex consisting of Erv1, Mia40, and substrate, linked by disulfide bonds, was not detected in vitro. Instead, Mia40 accepted six electrons from substrates, and this fully reduced Mia40 was sensitive to protease, indicative of conformational changes in the structure. Mia40 in mitochondria from the erv1–101 mutant was also trapped in a completely reduced state, demonstrating that Mia40 can accept up to six electrons as substrates are imported. Therefore, these studies support that Mia40 functions as an electron sink to facilitate the insertion of two disulfide bonds into substrates.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4230
Author(s):  
Andreas Windischbacher ◽  
Luca Steiner ◽  
Ritesh Haldar ◽  
Christof Wöll ◽  
Egbert Zojer ◽  
...  

In recent years, the photophysical properties of crystalline metal-organic frameworks (MOFs) have become increasingly relevant for their potential application in light-emitting devices, photovoltaics, nonlinear optics and sensing. The availability of high-quality experimental data for such systems makes them ideally suited for a validation of quantum mechanical simulations, aiming at an in-depth atomistic understanding of photophysical phenomena. Here we present a computational DFT study of the absorption and emission characteristics of a Zn-based surface-anchored metal-organic framework (Zn-SURMOF-2) containing anthracenedibenzoic acid (ADB) as linker. Combining band-structure and cluster-based simulations on ADB chromophores in various conformations and aggregation states, we are able to provide a detailed explanation of the experimentally observed photophysical properties of Zn-ADB SURMOF-2: The unexpected (weak) red-shift of the absorption maxima upon incorporating ADB chromophores into SURMOF-2 can be explained by a combination of excitonic coupling effects with conformational changes of the chromophores already in their ground state. As far as the unusually large red-shift of the emission of Zn-ADB SURMOF-2 is concerned, based on our simulations, we attribute it to a modification of the exciton coupling compared to conventional H-aggregates, which results from a relative slip of the centers of neighboring chromophores upon incorporation in Zn-ADB SURMOF-2.


2010 ◽  
Vol 114 (38) ◽  
pp. 15941-15950 ◽  
Author(s):  
Ganga Periyasamy ◽  
Engin Durgun ◽  
Jean-Yves Raty ◽  
F. Remacle

2021 ◽  
Vol 60 (5) ◽  
pp. 3238-3248
Author(s):  
Natalia L. Bazyakina ◽  
Valentin M. Makarov ◽  
Sergey Yu. Ketkov ◽  
Artem S. Bogomyakov ◽  
Roman V. Rumyantcev ◽  
...  

2008 ◽  
Vol 14 (22) ◽  
pp. 6597-6600 ◽  
Author(s):  
Agnieszka Kuc ◽  
Thomas Heine ◽  
Gotthard Seifert ◽  
Hélio A. Duarte

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2480
Author(s):  
Evgenii V. Beletskii ◽  
Daniil A. Lukyanov ◽  
Petr S. Vlasov ◽  
Andrei N. Yankin ◽  
Arslan B. Atangulov ◽  
...  

Conjugated coordination polymers attract attention as materials for electrochemical energy storage, mostly as cathode materials for supercapacitors. Faradaic capacity may be introduced to such materials using redox-active building blocks, metals, or ligands. Using this strategy, a novel hybrid cathode material was developed based on a Ni2+ metal-organic polymer. The proposed material, in addition to double-layer capacitance, shows high pseudocapacitance, which arises from the contributions of both the metal center and ligand. A tailoring strategy in the ligand design allows us to minimize the molecular weight of the ligand, which increases its gravimetric energy. According to computational results, the ligand makes the prevailing contribution to the pseudocapacitance of the material. Different approaches to metal–organic polymer (MOP) synthesis were implemented, and the obtained materials were examined by FTIR, Raman spectroscopy, powder XRD, SEM/EDX (energy-dispersive X-ray spectroscopy), TEM, and thermal analysis. Energy-storage performance was comparatively studied with cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD). As a result, materials with an excellent discharge capacity were obtained, reaching the gravimetric energy density of common inorganic cathode materials.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia Oktawiec ◽  
Henry Z. H. Jiang ◽  
Jenny G. Vitillo ◽  
Douglas A. Reed ◽  
Lucy E. Darago ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document