10-step Synthesis of 20-nor-Salvinorin A by Dynamic Strategic Bond Analysis

Author(s):  
Jeremy Roach ◽  
Yusuke Sasano ◽  
Cullen Schmid ◽  
Saheem Zaidi ◽  
Vsevolod Katritch ◽  
...  

Salvinorin A (SalA) is a plant metabolite that agonizes the human <i>kappa</i>-opioid receptor (κ-OR) with high affinity and high selectivity over <i>mu- </i>and <i>delta-</i>opioid receptors. Its therapeutic potential has stimulated extensive semi-synthetic studies and total synthesis campaigns. However, structural modification of SalA has been complicated by its instability, and efficient total synthesis has been frustrated by its dense, complex architecture. Treatment of strategic bonds in SalA as dynamic and dependent on structural perturbation enabled the identification of an efficient retrosynthetic pathway. Here we show that deletion of C20 simultaneously stabilizes the SalA skeleton, simplifies its synthesis and retains its high affinity and selectivity for the κ-OR. The resulting 10-step synthesis now opens the SalA scaffold to deep-seated property modification.

Author(s):  
Jeremy Roach ◽  
Yusuke Sasano ◽  
Cullen Schmid ◽  
Saheem Zaidi ◽  
Vsevolod Katritch ◽  
...  

Salvinorin A (SalA) is a plant metabolite that agonizes the human <i>kappa</i>-opioid receptor (κ-OR) with high affinity and high selectivity over <i>mu- </i>and <i>delta-</i>opioid receptors. Its therapeutic potential has stimulated extensive semi-synthetic studies and total synthesis campaigns. However, structural modification of SalA has been complicated by its instability, and efficient total synthesis has been frustrated by its dense, complex architecture. Treatment of strategic bonds in SalA as dynamic and dependent on structural perturbation enabled the identification of an efficient retrosynthetic pathway. Here we show that deletion of C20 simultaneously stabilizes the SalA skeleton, simplifies its synthesis and retains its high affinity and selectivity for the κ-OR. The resulting 10-step synthesis now opens the SalA scaffold to deep-seated property modification.


2017 ◽  
Author(s):  
Jeremy Roach ◽  
Yusuke Sasano ◽  
Cullen Schmid ◽  
Saheem Zaidi ◽  
Vsevolod Katritch ◽  
...  

Salvinorin A (SalA) is a plant metabolite that agonizes the human <i>kappa</i>-opioid receptor (κ-OR) with high affinity and high selectivity over <i>mu- </i>and <i>delta-</i>opioid receptors. Its therapeutic potential has stimulated extensive semi-synthetic studies and total synthesis campaigns. However, structural modification of SalA has been complicated by its instability, and efficient total synthesis has been frustrated by its dense, complex architecture. Treatment of strategic bonds in SalA as dynamic and dependent on structural perturbation enabled the identification of an efficient retrosynthetic pathway. Here we show that deletion of C20 simultaneously stabilizes the SalA skeleton, simplifies its synthesis and retains its high affinity and selectivity for the κ-OR. The resulting 10-step synthesis now opens the SalA scaffold to deep-seated property modification.


2019 ◽  
Vol 19 (16) ◽  
pp. 1298-1368 ◽  
Author(s):  
Ankit Jain ◽  
Poonam Piplani

: Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological properties, which could play a major role in the common mechanisms associated with various disorders like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural modification of this scaffold could be helpful in the generation of new therapeutically useful agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole, there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives has also been incorporated. The objective of the review is to provide insights to designing and synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.


Author(s):  
G. Gaeel ◽  
J. Belleney ◽  
P. Delay-Goyet ◽  
C. Seguin ◽  
J.-L. Morgat ◽  
...  

Peptides ◽  
1999 ◽  
Vol 20 (11) ◽  
pp. 1327-1335 ◽  
Author(s):  
Graeme L. Fraser ◽  
Maryse Labarre ◽  
Claude Godbout ◽  
Joanne Butterworth ◽  
Paul B.S. Clarke ◽  
...  

2020 ◽  
Author(s):  
Peter G. Chandler ◽  
Li Lynn Tan ◽  
Benjamin T. Porebski ◽  
James S. Green ◽  
Blake T. Riley ◽  
...  

AbstractThe fibronectin type III (FN3) monobody domain is a promising non-antibody scaffold which features a less complex architecture than an antibody while maintaining analogous binding loops. We previously developed FN3Con, a hyper-stable monobody derivative with diagnostic and therapeutic potential. Pre-stabilization of the scaffold mitigates the stability-function trade-off commonly associated with evolving a protein domain towards biological activity. Here, we aimed to examine if the FN3Con monobody could take on antibody-like binding to therapeutic targets, while retaining its extreme stability. We targeted the first of the Adnectin derivative of monobodies to reach clinical trials, which was engineered by directed evolution for binding to the therapeutic target VEGFR2; however, this function was gained at the expense of large losses in thermostability and increased oligomerisation. In order to mitigate these losses, we grafted the binding loops from Adnectin-anti-VEGFR2 (CT-322) onto the pre-stabilized FN3Con scaffold to produce a domain that successfully bound with high affinity to the therapeutic target VEGFR2. This FN3Con-anti-VEGFR2 construct also maintains high thermostability, including remarkable long-term stability, retaining binding activity after 2 years of storage at 36 °C. Further investigations into buffer excipients doubled the presence of monomeric monobody in accelerated stability trials. These data suggest that loop grafting onto a pre-stabilized scaffold is a viable strategy for the development of monobody domains with desirable biophysical characteristics, and is therefore well-suited to applications such as the evolution of multiple paratopes or shelf-stable diagnostics and therapeutics.


2008 ◽  
Vol 10 (7) ◽  
pp. 1365-1368 ◽  
Author(s):  
Masato Nozawa ◽  
Yuhki Suka ◽  
Takashi Hoshi ◽  
Toshio Suzuki ◽  
Hisahiro Hagiwara
Keyword(s):  

1984 ◽  
Vol 62 (10) ◽  
pp. 1284-1291 ◽  
Author(s):  
Michel Dumont ◽  
Simon Lemaire

Using prototypic ligands for each type of opioid receptors (μ, δ, κ, and σ) as well as compounds derived from each class of endogenous opioid peptides (β-endorphin, enkephalins, and dynorphins), we have undertaken the characterization of adrenomedullary opioid binding sites. The specific binding of [3H]etorphine ([3H]ET) to a membrane preparation of bovine adrenal medulla was greatly increased when the incubation temperature was raised from 22 to 37 °C. Characterization of the opioid binding sites was obtained at 37 °C with [3H]ET (nonspecific opioid ligand), [3H]ethylketocyclazocine ([3H]EKC; κ), [3H]dihydromorphine ([3H]DHM; μ), [3H]-[D-Ala2,D-Leu5]enkephalin ([3H]DADLE; δ), and N-[3H]allylnormetazocine ([3H]SKF-10047; σ) in the absence or presence of blocking agents for cross-reacting receptors. [3H]ET had a high affinity binding site (KD = 0.98 nM) with a Bmax of 119 pmol/g protein. All the other opioid compounds showed biphasic saturation curves with KD ranging from 0.6 to 1.29 nM for the high affinity binding site and from 2.49 to 12.1 nM for the low affinity binding site. The opioid μ-receptor was characterized by the high affinity binding site for [3H]DHM (KD = 1.29 nM; Bmax = 38 pmol/g protein). Blockade of the cross-reacting receptor sites for [3H]EKC, [3H]DADLE, and [3H]SKF-10047 revealed the presence of κ (KD = 0.66 nM; Bmax = 12 pmol/g protein), κ2 (benzomorphan site; KD = 11.1 nM; Bmax = 56 pmol/g protein), δ (KD = 0.67 nM; Bmax = 4.7 pmol/g protein), and σ (KD = 4.54 nM; Bmax = 32 pmol/g protein) opioid receptors. The ability of various opioid ligands to displace the binding of [3H]ET indicates a high potency for (−)-(1R,5R,9R,2″S)-5,9-dimethyl-2′-hydroxy-2-tetrahydrofurfuryl-6,7-benzomorphan hydrogen D-tartrate (MR-2034, a κ-opioid ligand; Ki = 6.2 nM), dihydromorphinone (DHMone; Ki = 6.9 nM), oxymorphone (Ki = 8.6 nM), DADLE (Ki high affinity = 8.4 nM) EKC (Ki = 31.8 nM), SKF-10047 (Ki = 75 nM), and opioid agonists/antagonists. trans-(+)-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide methanesulfonate hydrate (U-50,488H), the most specific κ-agonist, was a poor competitor (Ki = 5150 nM). However, the presence of κ-opioid receptors was supported by the ability of U-50,488H to displace [3H]EKC binding (Ki high affinity = 2.5 nM). The relative potency of various endogenous opioid peptides in displacing [3H]ET binding was as follows: β-endorphin [Formula: see text] dynorphin(1-17) > dynorphin(1-13) > [Arg6,Phe7)Met-enkephalin > Met-enkephalin > Leu-enkephalin. In addition, the presence of a high affinity binding site for dynorphin was demonstrated by the high potency of dynorphin (1-13) to displace [3H]EKC binding (Ki high affinity = 2.3 nM). These data provide further insights into the characterization of adrenal opioid receptors and suggest an in situ physiological role for adrenal opioid peptides.


Sign in / Sign up

Export Citation Format

Share Document