scholarly journals Mapping Binary Copolymer Property Space with Neural Networks

2019 ◽  
Author(s):  
Liam Wilbraham ◽  
Seb Sprick ◽  
Kim Jelfs ◽  
Martijn Zwijnenburg

The extremely large number of unique polymer compositions that can be achieved through copolymerisation makes it an attractive strategy for tuning their optoelectronic properties. However, this same attribute also makes it challenging to explore the resulting property space and understand the range of properties that can be realised. In an effort to enable the rapid exploration of this space in the case of binary copolymers, we train a neural network using a tiered data generation strategy to accurately predict the optical and electronic properties of 350,000 binary copolymers that are, in principle, synthesizable from their dihalogen monomers via Yamamoto, or Suzuki-Miyaura and Stille coupling after one-step functionalisation. By extracting general features of this property space that would otherwise be obscured in smaller datasets, we identify simple models that effectively relate the properties of these copolymers to the homopolymers of their constituent monomers, and challenge common ideas behind copolymer design. We find that binary copolymerisation does not appear to allow access to regions of the optoelectronic property space that are not already sampled by the homopolymers, although conceptually allows for more fine-grained property control. Using the large volume of data available, we test the hypothesis that copolymerisation of ‘donor’ and ‘acceptor’ monomers can result in copolymers with a lower optical gap than their related homopolymers. Overall, despite the prevalence of this concept in the literature, we observe that this phenomenon is relatively rare, and propose conditions that greatly enhance the likelihood of its experimental realisation. Finally, through a ‘topographical’ analysis of the co-polymer property space, we show how this large volume of data can be used to identify dominant monomers in specific regions of property space that may be amenable to a variety of applications, such as organic photovoltaics, light emitting diodes, and thermoelectrics. <div> <div> <div> <p> </p> </div> </div> </div>

2019 ◽  
Author(s):  
Liam Wilbraham ◽  
Seb Sprick ◽  
Kim Jelfs ◽  
Martijn Zwijnenburg

The extremely large number of unique polymer compositions that can be achieved through copolymerisation makes it an attractive strategy for tuning their optoelectronic properties. However, this same attribute also makes it challenging to explore the resulting property space and understand the range of properties that can be realised. In an effort to enable the rapid exploration of this space in the case of binary copolymers, we train a neural network using a tiered data generation strategy to accurately predict the optical and electronic properties of 350,000 binary copolymers that are, in principle, synthesizable from their dihalogen monomers via Yamamoto, or Suzuki-Miyaura and Stille coupling after one-step functionalisation. By extracting general features of this property space that would otherwise be obscured in smaller datasets, we identify simple models that effectively relate the properties of these copolymers to the homopolymers of their constituent monomers, and challenge common ideas behind copolymer design. We find that binary copolymerisation does not appear to allow access to regions of the optoelectronic property space that are not already sampled by the homopolymers, although conceptually allows for more fine-grained property control. Using the large volume of data available, we test the hypothesis that copolymerisation of ‘donor’ and ‘acceptor’ monomers can result in copolymers with a lower optical gap than their related homopolymers. Overall, despite the prevalence of this concept in the literature, we observe that this phenomenon is relatively rare, and propose conditions that greatly enhance the likelihood of its experimental realisation. Finally, through a ‘topographical’ analysis of the co-polymer property space, we show how this large volume of data can be used to identify dominant monomers in specific regions of property space that may be amenable to a variety of applications, such as organic photovoltaics, light emitting diodes, and thermoelectrics. <div> <div> <div> <p> </p> </div> </div> </div>


2018 ◽  
Author(s):  
Liam Wilbraham ◽  
Seb Sprick ◽  
Kim Jelfs ◽  
Martijn Zwijnenburg

<div> <div> <div> <p>The extremely large number of unique polymer compositions that can be achieved through copolymerisation makes it an attractive strategy for tuning their optoelectronic properties. However, this same attribute also makes it challenging to explore the resulting property space and understand the range of properties that can be realised. In an effort to enable the rapid exploration of this space in the case of binary copolymers, we train a neural network using a tiered data generation strategy to accurately predict the optical and electronic properties of 350,000 binary copolymers that are, in principle, synthesizable from their dihalogen monomers via Yamamoto, or Suzuki-Miyaura and Stille coupling after one-step functionalisation. By extracting general features of this property space that would otherwise be obscured in smaller datasets, we identify simple models that effectively relate the properties of these copolymers to the homopolymers of their constituent monomers. We find that binary copolymerisation does not appear to allow access to regions of the optoelectronic property space that are not already sampled by the homopolymers, although conceptually allows for more fine-grained property control. Using the large volume of data available, we test the hypothesis that copolymerisation of ‘donor’ and ‘acceptor’ monomers can result in copolymers with a lower optical gap than their related homopolymers and propose a heuristic to predict promising combinations of monomers for which this behaviour is likely. Finally, through a ‘topographical’ analysis of the co-polymer property space, we show how this large volume of data can be used to identify dominant monomers in specific regions of property space that may be amenable to a variety of applications, such as organic photovoltaics, light emitting diodes, and thermoelectrics. </p> </div> </div> </div>


2003 ◽  
Vol 41 (6) ◽  
pp. 725-731 ◽  
Author(s):  
Yun Chen ◽  
Rong-Bin Sheu ◽  
Tzi-Yi Wu

2006 ◽  
Vol 503-504 ◽  
pp. 865-870 ◽  
Author(s):  
Yongjun Chen ◽  
Qu Dong Wang ◽  
Jianguo Peng ◽  
Chun Quan Zhai

Experiments were conducted both to evaluate the potential for grain refinement, the subsequent mechanical properties at room temperature in samples of AZ31 Mg alloy and also to investigate the relationship between one-step and two-step high ratio extrusion (HRE). The one-step HRE was undertaken using a high extrusion ratio of 70:1 at 250, 300 and 350°C. And the two-step HRE was conducted with an extrusion ratio of 7 for the first step at 250, 300 and 350°C, followed by a second-step extrusion with an extrusion ratio of 10 at 250, 300 and 350°C. The initial grain size in the AZ31 ingot was 100μm and that after one-step HRE became similar to 5μm, after two-step HRE at 250, 300 and 350°C were 2, 4, 7μm, respectively, resulting in superior mechanical properties at ambient temperature. The microstructure of two-step HRE was finer and uniformer than that of one-step HRE and the strength of one-step and two-step HRE were similar, moreover, the elongation of one-step HRE was improved markedly than that of two-step HRE. Dynamic recrystallization and adjacent grain broking during HRE is introduced to explain the effects of one-step and two-step HRE on the microstructure and mechanical properties of AZ31 Mg alloy. The current results imply that the simple HRE method might be a feasible processing method for industry applications, and the multiply steps extrusion are effective to fabricate high strength of fine grained hcp metals.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3886
Author(s):  
Arwa Almusa ◽  
António H.S. Delgado ◽  
Paul Ashley ◽  
Anne M. Young

The of this study aim was to develop a rapid method to determine the chemical composition, solvent evaporation rates, and polymerization kinetics of dental adhesives. Single-component, acetone-containing adhesives One-Step (OS; Bisco, USA), Optibond Universal (OU; Kerr, USA), and G-Bond (GB; GC, Japan) were studied. Filler levels were determined gravimetrically. Monomers and solvents were quantified by comparing their pure Attenuated Total Reflectance-Fourier Transform Infra-Red (ATR–FTIR) spectra, summed in different ratios, with those of the adhesives. Spectral changes at 37 °C, throughout passive evaporation for 5 min, then polymerisation initiated by 20 s, and blue light emitting diode (LED) (600 mW/cm2) exposure (n = 3) were determined. Evaporation and polymerisation extent versus time and final changes were calculated using acetone (1360 cm−1) and methacrylate (1320 cm−1) peaks. OS, OU, and GB filler contents were 0, 9.6, and 5.3%. FTIR suggested OS and OU were Bis-GMA based, GB was urethane dimethacrylate (UDMA) based, and that each had a different diluent and acidic monomers and possible UDMA/acetone interactions. Furthermore, initial acetone percentages were all 40−50%. After 5 min drying, they were 0% for OS and OU but 10% for GB. Whilst OS had no water, that in OU declined from 18 to 10% and in GB from 25 to 20% upon drying. Evaporation extents were 50% of final levels at 23, 25, and 113 s for OS, OU, and GB, respectively. Polymerisation extents were all 50 and 80% of final levels before 10 and at 20 s of light exposure, respectively. Final monomer polymerisation levels were 68, 69, and 88% for OS, OU, and GB, respectively. An appreciation of initial and final adhesive chemistry is important for understanding the properties. The rates of evaporation and polymerisation provide indications of relative required drying and light cure times. UDMA/acetone interactions might explain the considerably greater drying time of GB.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Liam Wilbraham ◽  
Denisa Smajli ◽  
Isabelle Heath-Apostolopoulos ◽  
Martijn A. Zwijnenburg

2011 ◽  
Vol 12 (11) ◽  
pp. 1927-1935 ◽  
Author(s):  
Yu Bai ◽  
Jing Feng ◽  
Yue-Feng Liu ◽  
Jun-Feng Song ◽  
Janne Simonen ◽  
...  

2005 ◽  
Vol 20 (12) ◽  
pp. 3188-3198 ◽  
Author(s):  
Young-Gi Kim ◽  
Barry C. Thompson ◽  
Nisha Ananthakrishnan ◽  
G. Padmanaban ◽  
S. Ramakrishnan ◽  
...  

We report here on the utilization of variable band gap conjugated polymers for optoelectronic redox applications comprising organic photovoltaics, color tunable light emitting diodes, and electrochromics. For the evaluation of morphology in photovoltaicdevices, atomic force microscopy, and optical microscopy provided direct visualization of the blend film structure. The evolution of the morphology in two and three component blends incorporating poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenlenevinylene] (MEH-PPV), poly(methylmethacrylate) (PMMA), and [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) was investigated. It was found that while insulating PMMA can be used to modulate the phase separation in these blends, a bicontinuous network of donor and acceptor was required to achieve the best device results. Similarily, a MEH-PPVcopolymer with a decreased conjugation length has been used for investigating inter- and intramolecular photoinduced charge transfer in the presence of PMMA and PCBM.We fabricated MEH-PPV/PCBM solar cells that have power conversion efficiencies up to 1.5% with a range of 0.7–1.5%, dependent on the nature of the MEH-PPV used. This further indicates that in addition to blend morphology, polymer structure is critical for optimizing device performance. To this end, the concept of an ideal donor for photovoltaic devices based on poly[2,5-di(3,7-dialkoxy)-cyanoterephthalylidene] is described and two donor-acceptor polymers based on cyanovinylene (CNV) and dioxythiophene are discussed as representative examples of soluble narrow band gap polymers synthesized in our group. For light emitting applications, utilization of two blue emitting conjugated polymers poly (9,9-dioctylfluorene) (PFO) and poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(9,ethyl-3,6-carbazole)] (PFH-PEtCz)is presented for a color tunable polymer light emitting diode that emits orange, green, and blue light with a voltage range of 7–10 V as a function of the total conjugated polymer content in PMMA and is attributed to the phase separation between the conjugated polymers. Finally, the narrow band gap conjugated polymer, poly[bis(3,4-propylenedioxythiophene-dihexyl)]-cyanovinylene has been characterized for its electrochromic properties, illustrating the multifunctional nature of variable band gap conjugated polymers.


2019 ◽  
Vol 55 (81) ◽  
pp. 12164-12167 ◽  
Author(s):  
Ya Liu ◽  
Miaoran Zhang ◽  
Yanfen Wu ◽  
Rui Zhang ◽  
Yi Cao ◽  
...  

A one-step solvothermal method was exploited to synthesize blue, yellow and red carbon dots with high quantum yield by altering the corresponding reaction solvent.


Sign in / Sign up

Export Citation Format

Share Document