The Dual Role of Histidine as General Base and Recruiter of a Third Metal Ion in HIV-1 RNase H

2019 ◽  
Author(s):  
Simon L. Dürr ◽  
Olga Bohuszewicz ◽  
Reynier Suardiaz ◽  
Pablo G. Jambrina ◽  
Christine Peter ◽  
...  

<div>RNase H is a prototypical example for two metal ion catalysis in enzymes. An RNase H activity is present in the HIV-1 reverse transcriptase but also in many other nucleases such as Homo sapiens (Hs) or Escherichia coli (Ec) RNase H. The mechanism of the reaction has already been extensively studied based on the Bacillus halodurans (Bh) RNase H crystal structures, most recently using time-resolved X-Ray crystallography. However, kinetic and mutation experiments with HIV-1, Hs and Ec RNase H implicate a catalytic histidine in the reaction that is not present in Bh RNase H, and the protonation of the leaving group also remains poorly understood. We use quantum mechanics/molecular mechanics (QM/MM) calculations combining Hamiltonian replica exchange with a finite-temperature string method to study the cleavage of the ribonucleic acid (RNA) backbone of a DNA/RNA hybrid catalyzed by the HIV-1 RNase H with a focus on the proton transfer pathway and the role of the histidine. The reported pathway is consistent with kinetic data obtained with mutant HIV-1, Hs and Ec RNase H, the calculated pK<sub>a</sub> values of the DEDD residues and crystallographic studies. The overall reaction barrier of ∼18 kcal mol<sup>-1</sup>, encountered in the first step, matches the slow experimental rate of ∼1-100 min<sup>-1</sup>. Using Molecular dynamics (MD) calculations we are able to sample the recently identified binding site for a third transient divalent metal ion in the vicinity of the scissile phosphate in the product complex. Our results account for the experimental observation of a third metal ion facilitating product release in an Aquifex aeolicus RNase III crystal structure and the Bh RNase H in crystallo reaction. Based on our data we are able to show that the third ion and the histidine are key to product release as had been hypothesized.</div>

Author(s):  
Simon L. Dürr ◽  
Olga Bohuszewicz ◽  
Reynier Suardiaz ◽  
Pablo G. Jambrina ◽  
Christine Peter ◽  
...  

<div>RNase H is a prototypical example for two metal ion catalysis in enzymes. An RNase H activity is present in the HIV-1 reverse transcriptase but also in many other nucleases such as Homo sapiens (Hs) or Escherichia coli (Ec) RNase H. The mechanism of the reaction has already been extensively studied based on the Bacillus halodurans (Bh) RNase H crystal structures, most recently using time-resolved X-Ray crystallography. However, kinetic and mutation experiments with HIV-1, Hs and Ec RNase H implicate a catalytic histidine in the reaction that is not present in Bh RNase H, and the protonation of the leaving group also remains poorly understood. We use quantum mechanics/molecular mechanics (QM/MM) calculations combining Hamiltonian replica exchange with a finite-temperature string method to study the cleavage of the ribonucleic acid (RNA) backbone of a DNA/RNA hybrid catalyzed by the HIV-1 RNase H with a focus on the proton transfer pathway and the role of the histidine. The reported pathway is consistent with kinetic data obtained with mutant HIV-1, Hs and Ec RNase H, the calculated pK<sub>a</sub> values of the DEDD residues and crystallographic studies. The overall reaction barrier of ∼18 kcal mol<sup>-1</sup>, encountered in the first step, matches the slow experimental rate of ∼1-100 min<sup>-1</sup>. Using Molecular dynamics (MD) calculations we are able to sample the recently identified binding site for a third transient divalent metal ion in the vicinity of the scissile phosphate in the product complex. Our results account for the experimental observation of a third metal ion facilitating product release in an Aquifex aeolicus RNase III crystal structure and the Bh RNase H in crystallo reaction. Based on our data we are able to show that the third ion and the histidine are key to product release as had been hypothesized.</div>


ACS Catalysis ◽  
2021 ◽  
pp. 7915-7927
Author(s):  
Simon L. Dürr ◽  
Olga Bohuszewicz ◽  
Dénes Berta ◽  
Reynier Suardiaz ◽  
Pablo G. Jambrina ◽  
...  

2006 ◽  
Vol 80 (17) ◽  
pp. 8379-8389 ◽  
Author(s):  
David Lim ◽  
G. Glenn Gregorio ◽  
Craig Bingman ◽  
Erik Martinez-Hackert ◽  
Wayne A. Hendrickson ◽  
...  

ABSTRACT A crystallographic study of the Moloney murine leukemia virus (Mo-MLV) RNase H domain was performed to provide information about its structure and mechanism of action. These efforts resulted in the crystallization of a mutant Mo-MLV RNase H lacking the putative helix C (ΔC). The 1.6-Å resolution structure resembles the known structures of the human immunodeficiency virus type 1 (HIV-1) and Escherichia coli RNase H. The structure revealed the coordination of a magnesium ion within the catalytic core comprised of the highly conserved acidic residues D524, E562, and D583. Surface charge mapping of the Mo-MLV structure revealed a high density of basic charges on one side of the enzyme. Using a model of the Mo-MLV structure superimposed upon a structure of HIV-1 reverse transcriptase bound to an RNA/DNA hybrid substrate, Mo-MLV RNase H secondary structures and individual amino acids were examined for their potential roles in binding substrate. Identified regions included Mo-MLV RNase H β1-β2, αA, and αB and residues from αB to αD and its following loop. Most of the identified substrate-binding residues corresponded with residues directly binding nucleotides in an RNase H from Bacillus halodurans as observed in a cocrystal structure with RNA/DNA. Finally, superimposition of RNases H of Mo-MLV, E. coli, and HIV-1 revealed that a loop of the HIV-1 connection domain resides within the same region of the Mo-MLV and E. coli C-helix. The HIV-1 connection domain may serve to recognize and bind the RNA/DNA substrate major groove.


2010 ◽  
Vol 84 (10) ◽  
pp. 5238-5249 ◽  
Author(s):  
Galina N. Nikolenko ◽  
Krista A. Delviks-Frankenberry ◽  
Vinay K. Pathak

ABSTRACT Recently, mutations in the connection subdomain (CN) and RNase H domain of HIV-1 reverse transcriptase (RT) were observed to exhibit dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs). To elucidate the mechanism by which CN and RH mutations confer resistance to NNRTIs, we hypothesized that these mutations reduce RNase H cleavage and provide more time for the NNRTI to dissociate from the RT, resulting in the resumption of DNA synthesis and enhanced NNRTI resistance. We observed that the effect of the reduction in RNase H cleavage on NNRTI resistance is dependent upon the affinity of each NNRTI to the RT and further influenced by the presence of NNRTI-binding pocket (BP) mutants. D549N, Q475A, and Y501A mutants, which reduce RNase H cleavage, enhance resistance to nevirapine (NVP) and delavirdine (DLV), but not to efavirenz (EFV) and etravirine (ETR), consistent with their increase in affinity for RT. Combining the D549N mutant with NNRTI BP mutants further increases NNRTI resistance from 3- to 30-fold, supporting the role of NNRTI-RT affinity in our NNRTI resistance model. We also demonstrated that CNs from treatment-experienced patients, previously reported to enhance NRTI resistance, also reduce RNase H cleavage and enhance NNRTI resistance in the context of the patient RT pol domain or a wild-type pol domain. Together, these results confirm key predictions of our NNRTI resistance model and provide support for a unifying mechanism by which CN and RH mutations can exhibit dual NRTI and NNRTI resistance.


2013 ◽  
Vol 13 (16) ◽  
pp. 1907-1915 ◽  
Author(s):  
Bart Hoorelbeke ◽  
Youngju Kim ◽  
Toshikazu Oki ◽  
Yasuhiro Igarashi ◽  
Jan Balzarini
Keyword(s):  
Hiv 1 ◽  

2015 ◽  
Vol 14 (1) ◽  
pp. 9-23 ◽  
Author(s):  
Maxime Veillette ◽  
Jonathan Richard ◽  
Marzena Pazgier ◽  
George K. Lewis ◽  
Matthew S. Parsons ◽  
...  

2015 ◽  
Vol 13 (6) ◽  
pp. 479-489
Author(s):  
Amelie Saint Jean ◽  
Thomas Bourlet ◽  
Olivier Delezay
Keyword(s):  

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1425
Author(s):  
Anabel Guedán ◽  
Eve R. Caroe ◽  
Genevieve C. R. Barr ◽  
Kate N. Bishop

HIV-1 can infect non-dividing cells. The nuclear envelope therefore represents a barrier that HIV-1 must traverse in order to gain access to the host cell chromatin for integration. Hence, nuclear entry is a critical step in the early stages of HIV-1 replication. Following membrane fusion, the viral capsid (CA) lattice, which forms the outer face of the retroviral core, makes numerous interactions with cellular proteins that orchestrate the progress of HIV-1 through the replication cycle. The ability of CA to interact with nuclear pore proteins and other host factors around the nuclear pore determines whether nuclear entry occurs. Uncoating, the process by which the CA lattice opens and/or disassembles, is another critical step that must occur prior to integration. Both early and delayed uncoating have detrimental effects on viral infectivity. How uncoating relates to nuclear entry is currently hotly debated. Recent technological advances have led to intense discussions about the timing, location, and requirements for uncoating and have prompted the field to consider alternative uncoating scenarios that presently focus on uncoating at the nuclear pore and within the nuclear compartment. This review describes recent advances in the study of HIV-1 nuclear entry, outlines the interactions of the retroviral CA protein, and discusses the challenges of investigating HIV-1 uncoating.


Sign in / Sign up

Export Citation Format

Share Document