Role of Cations in the Interaction of Pradimicins with HIV-1 Envelope gp120

2013 ◽  
Vol 13 (16) ◽  
pp. 1907-1915 ◽  
Author(s):  
Bart Hoorelbeke ◽  
Youngju Kim ◽  
Toshikazu Oki ◽  
Yasuhiro Igarashi ◽  
Jan Balzarini
Keyword(s):  
Hiv 1 ◽  
Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 425
Author(s):  
Chih-Yen Lin ◽  
Wen-Hung Wang ◽  
Szu-Wei Huang ◽  
Chun-Sheng Yeh ◽  
Ruei-Yu Yuan ◽  
...  

HIV-1 CRF07_BC is a B’ and C subtype recombinant emerging virus and many of its viral characteristics remain unclear. Galectin-3 (Gal3) is a β-galactose binding lectin that has been reported as a pattern recognition receptor (PRR) and is known to mediate adhesion between cells and microbes. This study aims to examine the viral characteristics of HIV-1 CRF07_BC virus and the role of extracellular galectin-3 in HIV-1 CRF07_BC infection. A total of 28 HIV-1+ injecting drug users (IDUs) were recruited and 24 (85.7%) were identified as HIV-1 CRF07_BC. Results indicate that significant higher serum galectin-3 was measured in CRF07_BC infected patients and CRF07_BC infection triggered significant galectin-3 expression (p < 0.01). Viral characteristics demonstrate that CRF07_BC virions display a higher level of envelope gp120 spikes. The virus infectivity assay demonstrated that co-treatment with galectin-3 significantly promoted CRF07_BC attachment and internalization (p < 0.01). A co-immunoprecipitation assay showed that pulldown galectin-3 co-precipitated both CD4 and gp120 proteins. Results from an enzyme-linked immunosorbent assay (ELISA) indicate that the galectin-3 promoting effect occurs through enhancement of the interaction between gp120 and CD4. This study suggests that CRF07_BC was predominant in HIV-1+ IDUs and CRF07_BC utilized extracellular galectin-3 to enhance its infectivity via stabilization of the gp120-CD4 interaction.


2015 ◽  
Vol 14 (1) ◽  
pp. 9-23 ◽  
Author(s):  
Maxime Veillette ◽  
Jonathan Richard ◽  
Marzena Pazgier ◽  
George K. Lewis ◽  
Matthew S. Parsons ◽  
...  

2015 ◽  
Vol 13 (6) ◽  
pp. 479-489
Author(s):  
Amelie Saint Jean ◽  
Thomas Bourlet ◽  
Olivier Delezay
Keyword(s):  

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1425
Author(s):  
Anabel Guedán ◽  
Eve R. Caroe ◽  
Genevieve C. R. Barr ◽  
Kate N. Bishop

HIV-1 can infect non-dividing cells. The nuclear envelope therefore represents a barrier that HIV-1 must traverse in order to gain access to the host cell chromatin for integration. Hence, nuclear entry is a critical step in the early stages of HIV-1 replication. Following membrane fusion, the viral capsid (CA) lattice, which forms the outer face of the retroviral core, makes numerous interactions with cellular proteins that orchestrate the progress of HIV-1 through the replication cycle. The ability of CA to interact with nuclear pore proteins and other host factors around the nuclear pore determines whether nuclear entry occurs. Uncoating, the process by which the CA lattice opens and/or disassembles, is another critical step that must occur prior to integration. Both early and delayed uncoating have detrimental effects on viral infectivity. How uncoating relates to nuclear entry is currently hotly debated. Recent technological advances have led to intense discussions about the timing, location, and requirements for uncoating and have prompted the field to consider alternative uncoating scenarios that presently focus on uncoating at the nuclear pore and within the nuclear compartment. This review describes recent advances in the study of HIV-1 nuclear entry, outlines the interactions of the retroviral CA protein, and discusses the challenges of investigating HIV-1 uncoating.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1092
Author(s):  
János András Mótyán ◽  
Márió Miczi ◽  
Stephen Oroszlan ◽  
József Tőzsér

To explore the sequence context-dependent nature of the human immunodeficiency virus type 1 (HIV-1) protease’s specificity and to provide a rationale for viral mutagenesis to study the potential role of the nucleocapsid (NC) processing in HIV-1 replication, synthetic oligopeptide substrates representing the wild-type and modified versions of the proximal cleavage site of HIV-1 NC were assayed as substrates of the HIV-1 protease (PR). The S1′ substrate binding site of HIV-1 PR was studied by an in vitro assay using KIVKCF↓NCGK decapeptides having amino acid substitutions of N17 residue of the cleavage site of the first zinc-finger domain, and in silico calculations were also performed to investigate amino acid preferences of S1′ site. Second site substitutions have also been designed to produce “revertant” substrates and convert a non-hydrolysable sequence (having glycine in place of N17) to a substrate. The specificity constants obtained for peptides containing non-charged P1′ substitutions correlated well with the residue volume, while the correlation with the calculated interaction energies showed the importance of hydrophobicity: interaction energies with polar residues were related to substantially lower specificity constants. Cleavable “revertants” showed one residue shift of cleavage position due to an alternative productive binding mode, and surprisingly, a double cleavage of a substrate was also observed. The results revealed the importance of alternative binding possibilities of substrates into the HIV-1 PR. The introduction of the “revertant” mutations into infectious virus clones may provide further insights into the potential role of NC processing in the early phase of the viral life-cycle.


ACS Catalysis ◽  
2021 ◽  
pp. 7915-7927
Author(s):  
Simon L. Dürr ◽  
Olga Bohuszewicz ◽  
Dénes Berta ◽  
Reynier Suardiaz ◽  
Pablo G. Jambrina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document