scholarly journals Effect of Film Thickness on the Far- and Near-Field Optical Response of Nanoparticle-on-Film Systems

Author(s):  
Rachel Armstrong ◽  
Willeke van Liempt ◽  
Peter Zijlstra

<p>We study the near-field and far-field optical response of nanoparticle-on-film systems using single-nanoparticle spectroscopy and numerical simulations. We find that the optical spectra contain three dominant modes - a transverse dipole and quadrupole mode, and a dominant vertical antenna mode. We vary the thickness of the metal film from 10 – 45 nm, and find that the vertical antenna mode wavelength is nearly independent of the film thickness. In contrast, we find that the associated near-field enhancement in the gap between the particle and the film strongly depends on the film thickness. This trend is also observed in the far-field where the vertical antenna mode strongly increases in amplitude for increasing film-thicknesses up to the skin depth of gold. These findings are in good agreement with a numerical model and pave the way to study field-mediated processes such as fluorescence, SERS, and localized chemistry at the same resonance wavelength but at varying degrees of field enhancement.</p>

2019 ◽  
Author(s):  
Rachel Armstrong ◽  
Willeke van Liempt ◽  
Peter Zijlstra

<p>We study the near-field and far-field optical response of nanoparticle-on-film systems using single-nanoparticle spectroscopy and numerical simulations. We find that the optical spectra contain three dominant modes - a transverse dipole and quadrupole mode, and a dominant vertical antenna mode. We vary the thickness of the metal film from 10 – 45 nm, and find that the vertical antenna mode wavelength is nearly independent of the film thickness. In contrast, we find that the associated near-field enhancement in the gap between the particle and the film strongly depends on the film thickness. This trend is also observed in the far-field where the vertical antenna mode strongly increases in amplitude for increasing film-thicknesses up to the skin depth of gold. These findings are in good agreement with a numerical model and pave the way to study field-mediated processes such as fluorescence, SERS, and localized chemistry at the same resonance wavelength but at varying degrees of field enhancement.</p>


2013 ◽  
Vol 4 ◽  
pp. 974-987 ◽  
Author(s):  
Nikita Arnold ◽  
Boyang Ding ◽  
Calin Hrelescu ◽  
Thomas A Klar

We numerically simulate the compensation of absorption, the near-field enhancement as well as the differential far-field scattering cross section for dye-doped polystyrene spheres (radius 195 nm), which are half-covered by a silver layer of 10–40 nm thickness. Such silver capped spheres are interesting candidates for nanoplasmonic lasers, so-called spasers. We find that spasing requires gain levels less than 3.7 times higher than those in commercially available dye-doped spheres. However, commercially available concentrations are already apt to achieve negative absorption, and to narrow and enhance scattering by higher order modes. Narrowing of the plasmonic modes by gain also makes visible higher order modes, which are normally obscured by the broad spectral features of the lower order modes. We further show that the angular distribution of the far-field scattering of the spasing modes is by no means dipole-like and is very sensitive to the geometry of the structure.


Nanoscale ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 5402-5411 ◽  
Author(s):  
Min Xi ◽  
Björn M. Reinhard

The effect of composition and tip morphology on the far-field optical response of Ag–Au–Ag nanorods with Au bipyramid core is quantified, and the near-field associated with standing plasmon waves in nanorods on silicon substrates is investigated.


Author(s):  
Jian Wei You ◽  
Jie You ◽  
Martin Weismann ◽  
Nicolae C. Panoiu

Intriguing and unusual physical properties of graphene offer remarkable potential for advanced, photonics-related technological applications, particularly in the area of nonlinear optics at the deep-subwavelength scale. In this study, we use a recently developed numerical method to illustrate an efficient mechanism that can lead to orders of magnitude enhancement of the third-harmonic generation in graphene diffraction gratings. In particular, we demonstrate that by taking advantage of the geometry dependence of the resonance wavelength of localized surface-plasmon polaritons of graphene ribbons and discs one can engineer the spectral response of graphene gratings so that strong plasmonic resonances exist at both the fundamental frequency and third-harmonic (TH). As a result of this double-resonant mechanism for optical near-field enhancement, the intensity of the TH can be increased by more than six orders of magnitude. This article is part of the themed issue ‘New horizons for nanophotonics’.


2011 ◽  
Vol 52-54 ◽  
pp. 1388-1393
Author(s):  
Jun Tao ◽  
Gang Sun ◽  
Ying Hu ◽  
Miao Zhang

In this article, four observation points are selected in the flow field when predicting aerodynamic noise of a multi-element airfoil for both a coarser grid and a finer grid. Numerical simulation of N-S equations is employed to obtain near-field acoustic information, then far-field acoustic information is obtained through acoustic analogy theory combined with FW-H equation. Computation indicates: the codes calculate the flow field in good agreement with the experimental data; The finer the grid is, the more stable the calculated sound pressure level (SPL) is and the more regularly d(SPL)/d(St) varies.


2016 ◽  
Vol 25 (02) ◽  
pp. 1750002 ◽  
Author(s):  
Shiquan Wang

This paper investigates the prediction of the far-field performances of high frequency projectors using the second source array method (SSAM). The far-field parameters can be calculated accurately using the complex acoustic pressure data of two very close parallel planes which lie in the near-field region of the projector. The paper simulates the feasibility of predicting the far-field parameters such as transmitting voltage response and the far-field directivity pattern. The predicting results are compared with that calculated using boundary element method (BEM). It shows very good agreement between the two methods. A planar high frequency projector is measured using the near-field method. In order to verify the predicting results, the far-field measurement is performed for the same projector. The comparison of the results shows that the near-field method is capable to precisely predict the far-field parameters of the projector.


Author(s):  
Mohammad Tariq Yaseen

Metal nanoparticles are very important for their optical properties when they interact with light. Metal nanoparticles have the ability to confine the collective oscillation of electrons, which is called localized surface plasmon resonance (LSPR). In this work, silver nanoparticles have been proposed to enhance light harvesting, which could be useful for different applications. Metal nanoparticles such as gold and silver nanoparticles have the ability to concentrate field in a very small space. In this study, gold and silver nanoparticles optical response was investigated using frequency domain simulation. The resonance wavelength of gold and silver nanoparticles was about 550 nm and 400 nm, respectively. Silver nanoparticles showed better LSPR performance than gold nanoparticles. Therefore, silver nanoparticles were chosen for optical field enhancement. Here silver nanoparticles were placed on a silicon substrate for optical field enhancement. To study the effect of size on the optical response of silver nanoparticles, the optical properties of this structure with different silver nanoparticles diameter values were investigated. Silver nanoparticles with 40 nm diameters showed a better optical response. To study the effect of the distance between silver nanoparticles on the optical response, different gap values were put between silver nanoparticles. The gap value of 4 nm showed a better optical response. The obtained results showed that the localized field is strongly dependent on the metal type, size, and space between nanoparticles. In addition, the optical field concentration can be controlled by tuning the size and space between silver nanoparticles. This will support localized field enhancement. The enhanced localized field will increase the field absorption near the surface, which can be beneficial for energy harvesting applications such as solar cells and detectors


Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 466-476 ◽  
Author(s):  
Philip E. Wannamaker

The resistivity model for the Sulphur Springs area in the companion paper (Part I) plus the availability of overlapping controlled‐source audiomagnetotelluric (CSAMT) and magnetotelluric (MT) data has allowed study of far‐field to near‐field transitions, source field geometries over the survey area, and scalar‐tensor impedance discrepancies. The regional setting of conductive Paleozoic sediments over resistive basement seriously reduced depth of exploration within the plane‐wave regime to about 1/20th of the transmitter‐receiver separation, rather than the traditional 1/3rd to 1/5th based on half‐space models. As frequency falls to where skin depth in the sedimentary layer exceeds its thickness, transmitter electromagnetic (EM) fields enter the resistive basement and may diffuse to the receiver with relatively little attenuation, promoting near‐field behavior. Comparisons are made of observed electric (E) and magnetic (H) fields inside and outside the caldera with EM fields computed from layered resistivity models derived from local 1-D inversion of the ρa and θ, and from simple 3-D models. First, the comparisons indicate that small‐scale structure near the transmitter does not lead to overprint effects in the impedance data at the receiver but, instead, acts as an equivalent far‐field source. Second, at both high and low frequencies, the observed E and H fields can depart substantially from those predicted by local layered models. In fact, an effective regional layering appears to control the magnetic field amplitudes and the far‐to near‐field transition in this survey area. The observed electric fields, on the other hand, are controlled by all scales of geology. When heterogeneity is important, significant departures between scalar and tensor CSAMT data can be expected, and are exacerbated when the source field is poorly coupled to the sensors. The problem is much reduced for vector CSAMT measurements where all horizontal field components are measured and the maximally coupled results are defined, but mode identification is more difficult for multidimensional structures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guang-Can Li ◽  
Dangyuan Lei ◽  
Meng Qiu ◽  
Wei Jin ◽  
Sheng Lan ◽  
...  

AbstractEfficient frequency up-conversion of coherent light at the nanoscale is highly demanded for a variety of modern photonic applications, but it remains challenging in nanophotonics. Surface second-order nonlinearity of noble metals can be significantly boosted up by plasmon-induced field enhancement, however the related far-field second-harmonic generation (SHG) may also be quenched in highly symmetric plasmonic nanostructures despite huge near-field amplification. Here, we demonstrate that the SHG from a single gold nanosphere is significantly enhanced when tightly coupled to a metal film, even in the absence of a plasmon resonance at the SH frequency. The light-induced electromagnetic asymmetry in the nanogap junction efficiently suppresses the cancelling of locally generated SHG fields and the SH emission is further amplified through preferential coupling to the bright, bonding dipolar resonance mode of the nanocavity. The far-field SHG conversion efficiency of up to $$3.56\times 10^{-7}$$ 3.56 × 1 0 − 7 W−1 is demonstrated from a single gold nanosphere of 100 nm diameter, two orders of magnitude higher than for complex double-resonant plasmonic nanostructures. Such highly efficient SHG from a metal nanocavity also constitutes an ultrasensitive nonlinear nanoprobe to map the distribution of longitudinal vectorial light fields in nanophotonic systems.


Sign in / Sign up

Export Citation Format

Share Document