scholarly journals Double-resonant enhancement of third-harmonic generation in graphene nanostructures

Author(s):  
Jian Wei You ◽  
Jie You ◽  
Martin Weismann ◽  
Nicolae C. Panoiu

Intriguing and unusual physical properties of graphene offer remarkable potential for advanced, photonics-related technological applications, particularly in the area of nonlinear optics at the deep-subwavelength scale. In this study, we use a recently developed numerical method to illustrate an efficient mechanism that can lead to orders of magnitude enhancement of the third-harmonic generation in graphene diffraction gratings. In particular, we demonstrate that by taking advantage of the geometry dependence of the resonance wavelength of localized surface-plasmon polaritons of graphene ribbons and discs one can engineer the spectral response of graphene gratings so that strong plasmonic resonances exist at both the fundamental frequency and third-harmonic (TH). As a result of this double-resonant mechanism for optical near-field enhancement, the intensity of the TH can be increased by more than six orders of magnitude. This article is part of the themed issue ‘New horizons for nanophotonics’.

2017 ◽  
Vol 383 ◽  
pp. 418-422 ◽  
Author(s):  
Hui Zhang ◽  
Ning Zhu ◽  
Ting Mei ◽  
Miao He ◽  
Hao Li ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 50190-50200 ◽  
Author(s):  
H. Nasari ◽  
M. S. Abrishamian

In this study, we demonstrate how field enhancement due to plasmonic resonances can noticeably improve the efficiency of third harmonic generation (THG) from graphene sheets on a grating substrate under normal illumination of terahertz (THz) waves.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Bedir B. Yousif ◽  
Ahmed S. Samra

The optical properties of plasmonic nanoantennas are investigated in detail using the finite integration technique (FIT). The validity of this technique is verified by comparison to the exact solution generalized Mie method (GMM). The influence of the geometrical parameters (antenna length, gap dimension, and shapes) on the antenna field enhancement and spectral response is discussed. Localized surface plasmon resonances of Au (gold) dimers nanospheres, bowtie, and aperture bowtie nanoantennas are modeled. The enhanced field is equivalent to a strong light spot which can lead to the resolution improvement of the microscopy and optical lithography, thus increasing the optical data storage capacity. Furthermore, the sensitivity of the antennas to index changes of the environment and substrate is investigated in detail for biosensing applications. We confirm that our approach yields an exact correspondence with GMM theory for Au dimers nanospheres at gap dimensions 5 nm and 10 nm but gives an approximation error of less than 1.37% for gap dimensions 1 nm and 2 nm with diameters approaching 80 nm. In addition, the far-field characteristics of the aperture bowtie nanoantenna such as directivity and gain are studied. The promising results of this study may have useful potential applications in near-field sample detection, optical microscopy, and so forth.


Sign in / Sign up

Export Citation Format

Share Document