scholarly journals Structure, Stability and Water Adsorption on Ultra-Thin TiO2 Supported on TiN

2019 ◽  
Author(s):  
Jose Julio Gutierrez Moreno ◽  
Marco Fronzi ◽  
Pierre Lovera ◽  
alan O'Riordan ◽  
Mike J Ford ◽  
...  

<p></p><p>Interfacial metal-oxide systems with ultrathin oxide layers are of high interest for their use in catalysis. In this study, we present a density functional theory (DFT) investigation of the structure of ultrathin rutile layers (one and two TiO<sub>2</sub> layers) supported on TiN and the stability of water on these interfacial structures. The rutile layers are stabilized on the TiN surface through the formation of interfacial Ti–O bonds. Charge transfer from the TiN substrate leads to the formation of reduced Ti<sup>3+</sup> cations in TiO<sub>2.</sub> The structure of the one-layer oxide slab is strongly distorted at the interface, while the thicker TiO<sub>2</sub> layer preserves the rutile structure. The energy cost for the formation of a single O vacancy in the one-layer oxide slab is only 0.5 eV with respect to the ideal interface. For the two-layer oxide slab, the introduction of several vacancies in an already non-stoichiometric system becomes progressively more favourable, which indicates the stability of the highly non-stoichiometric interfaces. Isolated water molecules dissociate when adsorbed at the TiO<sub>2</sub> layers. At higher coverages the preference is for molecular water adsorption. Our ab initio thermodynamics calculations show the fully water covered stoichiometric models as the most stable structure at typical ambient conditions. Interfacial models with multiple vacancies are most stable at low (reducing) oxygen chemical potential values. A water monolayer adsorbs dissociatively on the highly distorted 2-layer TiO<sub>1.75</sub>-TiN interface, where the Ti<sup>3+</sup> states lying above the top of the valence band contribute to a significant reduction of the energy gap compared to the stoichiometric TiO<sub>2</sub>-TiN model. Our results provide a guide for the design of novel interfacial systems containing ultrathin TiO<sub>2</sub> with potential application as photocatalytic water splitting devices.</p><p></p>

2019 ◽  
Author(s):  
Jose Julio Gutierrez Moreno ◽  
Marco Fronzi ◽  
Pierre Lovera ◽  
alan O'Riordan ◽  
Mike J Ford ◽  
...  

<p></p><p>Interfacial metal-oxide systems with ultrathin oxide layers are of high interest for their use in catalysis. In this study, we present a density functional theory (DFT) investigation of the structure of ultrathin rutile layers (one and two TiO<sub>2</sub> layers) supported on TiN and the stability of water on these interfacial structures. The rutile layers are stabilized on the TiN surface through the formation of interfacial Ti–O bonds. Charge transfer from the TiN substrate leads to the formation of reduced Ti<sup>3+</sup> cations in TiO<sub>2.</sub> The structure of the one-layer oxide slab is strongly distorted at the interface, while the thicker TiO<sub>2</sub> layer preserves the rutile structure. The energy cost for the formation of a single O vacancy in the one-layer oxide slab is only 0.5 eV with respect to the ideal interface. For the two-layer oxide slab, the introduction of several vacancies in an already non-stoichiometric system becomes progressively more favourable, which indicates the stability of the highly non-stoichiometric interfaces. Isolated water molecules dissociate when adsorbed at the TiO<sub>2</sub> layers. At higher coverages the preference is for molecular water adsorption. Our ab initio thermodynamics calculations show the fully water covered stoichiometric models as the most stable structure at typical ambient conditions. Interfacial models with multiple vacancies are most stable at low (reducing) oxygen chemical potential values. A water monolayer adsorbs dissociatively on the highly distorted 2-layer TiO<sub>1.75</sub>-TiN interface, where the Ti<sup>3+</sup> states lying above the top of the valence band contribute to a significant reduction of the energy gap compared to the stoichiometric TiO<sub>2</sub>-TiN model. Our results provide a guide for the design of novel interfacial systems containing ultrathin TiO<sub>2</sub> with potential application as photocatalytic water splitting devices.</p><p></p>


2019 ◽  
Author(s):  
Jose Julio Gutierrez Moreno ◽  
Marco Fronzi ◽  
Pierre Lovera ◽  
alan O'Riordan ◽  
Mike J Ford ◽  
...  

<p></p><p>Interfacial metal-oxide systems with ultrathin oxide layers are of high interest for their use in catalysis. In this study, we present a density functional theory (DFT) investigation of the structure of ultrathin rutile layers (one and two TiO<sub>2</sub> layers) supported on TiN and the stability of water on these interfacial structures. The rutile layers are stabilized on the TiN surface through the formation of interfacial Ti–O bonds. Charge transfer from the TiN substrate leads to the formation of reduced Ti<sup>3+</sup> cations in TiO<sub>2.</sub> The structure of the one-layer oxide slab is strongly distorted at the interface, while the thicker TiO<sub>2</sub> layer preserves the rutile structure. The energy cost for the formation of a single O vacancy in the one-layer oxide slab is only 0.5 eV with respect to the ideal interface. For the two-layer oxide slab, the introduction of several vacancies in an already non-stoichiometric system becomes progressively more favourable, which indicates the stability of the highly non-stoichiometric interfaces. Isolated water molecules dissociate when adsorbed at the TiO<sub>2</sub> layers. At higher coverages the preference is for molecular water adsorption. Our ab initio thermodynamics calculations show the fully water covered stoichiometric models as the most stable structure at typical ambient conditions. Interfacial models with multiple vacancies are most stable at low (reducing) oxygen chemical potential values. A water monolayer adsorbs dissociatively on the highly distorted 2-layer TiO<sub>1.75</sub>-TiN interface, where the Ti<sup>3+</sup> states lying above the top of the valence band contribute to a significant reduction of the energy gap compared to the stoichiometric TiO<sub>2</sub>-TiN model. Our results provide a guide for the design of novel interfacial systems containing ultrathin TiO<sub>2</sub> with potential application as photocatalytic water splitting devices.</p><p></p>


2017 ◽  
Author(s):  
Marco Fronzi ◽  
Michael Nolan

<div>We use fi rst-principles Density Functional Theory calculations with inclusion of the Hubbard +U correction (DFT+U) on the Cu 3d states, to investigate the interaction of water with the CuO(111) surface. We compute adsorption energies and the stability of different water coverages, with a particular focus on the interaction of water with oxygen vacancy sites, and how vacancy stabilization occurs. We study energetics, geometry and electronic structure of relevant confi gurations finding that there are only small changes to the local geometry around the water adsorption site(s) and the electronic properties. The inclusion of van der Waals interactions has no signi ficant impact on the stability of water on CuO(111). We extend the analysis to include realistic environmental conditions within the ab-initio atomistic thermodynamics framework, which allows us to assess the stability of the water/copper-oxide system as a function of ambient conditions, and focus on three important surface processes: water adsorption/desorption on the stoichiometric surface, conditions for dissociation, and oxygen vacancy stabilization. </div>


2021 ◽  
Vol 22 (4) ◽  
pp. 2030
Author(s):  
Hela Ferjani ◽  
Hammouda Chebbi ◽  
Mohammed Fettouhi

The new organic–inorganic compound (C6H9N2)2BiCl5 (I) has been grown by the solvent evaporation method. The one-dimensional (1D) structure of the allylimidazolium chlorobismuthate (I) has been determined by single crystal X-ray diffraction. It crystallizes in the centrosymmetric space group C2/c and consists of 1-allylimidazolium cations and (1D) chains of the anion BiCl52−, built up of corner-sharing [BiCl63−] octahedra which are interconnected by means of hydrogen bonding contacts N/C–H⋯Cl. The intermolecular interactions were quantified using Hirshfeld surface analysis and the enrichment ratio established that the most important role in the stability of the crystal structure was provided by hydrogen bonding and H···H interactions. The highest value of E was calculated for the contact N⋯C (6.87) followed by C⋯C (2.85) and Bi⋯Cl (2.43). These contacts were favored and made the main contribution to the crystal packing. The vibrational modes were identified and assigned by infrared and Raman spectroscopy. The optical band gap (Eg = 3.26 eV) was calculated from the diffuse reflectance spectrum and showed that we can consider the material as a semiconductor. The density functional theory (DFT) has been used to determine the calculated gap, which was about 3.73 eV, and to explain the electronic structure of the title compound, its optical properties, and the stability of the organic part by the calculation of HOMO and LUMO energy and the Fukui indices.


2014 ◽  
Vol 92 (11) ◽  
pp. 1111-1117
Author(s):  
Xueli Zhang ◽  
Xuedong Gong

Nitrogen-rich 1,2,4-triazole (1) and 1,2,3-triazole (2) react as bases with the oxygen-rich acids HNO3 (a), HN(NO2)2 (b), and HClO4 (c) to produce energetic salts (1a, 1b, and 1c and 2a, 2b, and 2c, respectively) potentially applicable to composite explosives and propellants. In this study, these salts were studied with the dispersion-corrected density functional theory. For the isomers such as 1a and 2a, the more negative ΔrGm of the formation reaction leads to a higher thermally stable salt. The ability to form intramolecular hydrogen bonds predicted with the quantum theory of atoms in molecules has the order of 2 > 1. Different hydrogen bonds result in different second-order perturbation energies, redshifts in IR, and electron density differences. The charge transfer, binding energy, dispersion energy, lattice energy, and energy gap between frontier orbits in the salts of 1 are larger than those of 2, which is helpful for stabilizing the former, and 1 is more obviously stabilized than 2 by formation of salts. Different conformations of 1 and 2 hardly affect the frontier orbital distributions. Base 1 is a more preferred base than 2 to form salts.


2010 ◽  
Vol 150-151 ◽  
pp. 984-987
Author(s):  
Shuai Qin Yu ◽  
Li Hua Dong ◽  
Yan Sheng Yin

The geometric structures and electronic properties of Si doped Fen (n=2-7) clusters have been systematically studied at the BPW91 level in density-functional theory (DFT). Calculated results show that an Si impurity does not change the ground-state structure of small iron clusters and prefers to occupy surface site bonding with iron atoms as many as possible. The second-order energy difference and the vertical ionization potential show that n=4 and 6 are magic numbers within the size range studied, but the maximum value occurs at n=4 for the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital(LUMO). It is found that the hybridization intensity between Si and Fe atoms is relevant to the stability of clusters.


2009 ◽  
Vol 87 (10) ◽  
pp. 1280-1295 ◽  
Author(s):  
Yosadara Ruiz-Morales

The characterization of the stability of the fused aromatic region (FAR) in oil asphaltenes in terms of kinetic and thermodynamic stability is primary. Such an understanding is important if we are to get the optimal use from the heavy fraction of any crude oil. The FAR region is composed of pericondensed cyclopenta-fused polycyclic aromatic hydrocarbon compounds (CPPAHs) with N, S, and O heteroatoms. The Clar model, which states that the most important representation of a PAH is one having the maximum number of disjoint π-sextets, depicted by inscribed circles, and a minimum number of fixed double bonds, captures the essence of the kinetic and thermodynamic stability arguments. This model is readily employed for complex aromatics of the sort to be considered for asphaltenes. In the present research we prove that the aromaticity of CPPAHs can be assessed by using the qualitative easy-to-apply Y-rule. In the literature, it is proven that the Y-rule is applicable to elucidate the aromaticity of benzenoid PAHs and it has been validated for pericondensed benzenoid PAHs but not for pericondensed CPPAHs. Here, we verify that it is applicable for CPPAHs. The applicability of the Y-rule has been theoretically proven by comparing the π-electronic distribution obtained with it with the one obtained from nucleus-independent chemical shift (NICS) calculations at the density functional theory (DFT) level. The importance of doing this is that due to the polydispersity in the composition of the oil asphaltenes, and to understand their aromatic core structure, it is necessary to be able to asses the aromaticity of many cyclopenta-fused PAHs (possibly more than 500), of different sizes (up to 15 rings between hexagons and pentagons), and different spatial rearrangements in a quick but realistic and effective way. To try to do this with NICS will be very time consuming and computationally expensive, especially in the case of big systems.


2015 ◽  
Vol 68 (9) ◽  
pp. 1438 ◽  
Author(s):  
Zahra Azizi ◽  
Mehdi Ghambarian ◽  
Mohammad A. Rezaei ◽  
Mohammad Ghashghaee

Various saturated five-membered N,X-heterocyclic carbenes (X = N, O, S, P, Si, C, and B) have been studied by ab initio and density functional theory (DFT) methods. The substitutions alter the properties of the reference carbene from the viewpoint of electronic structure, stability, nucleophilicity, and basicity. Our study shows that the oxygen containing carbene (X = O) induces the highest HOMO–LUMO energy gap (ΔEHOMO–LUMO), while carbene with X = N has the widest singlet–triplet energy difference (ΔEs–t). The nucleophilicity of the carbene derivatives increased upon replacement of C, Si, and B, with the effect of the boron substituent being more pronounced. In addition, the basicity of the structure increased for the carbene derivatives with X = C and B with the latter substitution imposing a remarkably higher effect. Moreover, the substitution of boron at the α-position of the carbene increased the nucleophilicity and basicity, while inducing a reduction in the values of ΔEs–t and ΔEHOMO–LUMO.


2021 ◽  
Author(s):  
Amarjyoti Das ◽  
Rajesh Kumar Yadav

Abstract Density functional theory (DFT) calculations are used to investigate the structural, electronic, and optical properties of the significant fullerene-like cage of In12N12 nanoclusters with Zn (group II) and Si (group IV) dopants. In terms of formation energies and binding energies, the structural stability of the nanocages were studied. It has been seen that stability of the structure is slightly increases with the inclusion of doping. The study found that both the dopants significantly reduce the energy gap of the In12N12 nanocluster. The electronic properties of the In12N12 nanocluster seems to be sensitive to dopants, and it could be altered by a specific impurity. Moreover, electronic properties such as density of states (DOS) analysis, dipole moment, HOMO energies, LUMO energies, energy gaps, chemical potential, electron affinity, ionization potential, hardness, and electrophilicity index are also discussed. The optical absorption spectra of pure and doped nanocages were computed using TDDFT formalism. The maximum wavelength of the pure In12N12 nanocage is moved towards higher wavelength region within the infrared region after doping with Zn and Si, indicating a redshift.


Clay Minerals ◽  
2019 ◽  
Vol 54 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Eva Scholtzová ◽  
Daniel Tunega

AbstractThe stability of organoclays prepared from smectites and organic cations depends on the type of used cation, among other factors. This study provides a prediction of the structure, stability and dynamic properties of organoclays based on montmorillonite (Mt) intercalated with two types of organic cations – tetrabutylammonium (TBA) and tetrabutylphosphonium (TBP) – using first-principle density functional theory. The results obtained from simulations were also used in the interpretation of the experimental infrared spectrum of the TBP-Mt organoclay. Analysis of interatomic distances showed that weak C–O···H hydrogen bonds were important in the stabilization of both TBA- and TBP-Mt models, with slightly stronger hydrogen bonds for the TBP cation. Calculated intercalation and adsorption reaction energies (ΔEint//ΔEads*/ΔEads**) confirmed that TBP-Mt structures (–72.4//–32.8/–53.8 kJ/mol) were considerably more stable than TBA-Mt structures (–56.7//–22.6/–37.4 kJ/mol). The stronger interactions of the alkyl chains of the TBP cation with Mt basal surfaces in comparison to those of the TBA cation were also correlated with the positions of the calculated bands of the C–H stretching vibrations.


Sign in / Sign up

Export Citation Format

Share Document