Aromaticity in pericondensed cyclopenta-fused polycyclic aromatic hydrocarbons determined by density functional theory nucleus-independent chemical shifts and the Y-rule — Implications in oil asphaltene stability

2009 ◽  
Vol 87 (10) ◽  
pp. 1280-1295 ◽  
Author(s):  
Yosadara Ruiz-Morales

The characterization of the stability of the fused aromatic region (FAR) in oil asphaltenes in terms of kinetic and thermodynamic stability is primary. Such an understanding is important if we are to get the optimal use from the heavy fraction of any crude oil. The FAR region is composed of pericondensed cyclopenta-fused polycyclic aromatic hydrocarbon compounds (CPPAHs) with N, S, and O heteroatoms. The Clar model, which states that the most important representation of a PAH is one having the maximum number of disjoint π-sextets, depicted by inscribed circles, and a minimum number of fixed double bonds, captures the essence of the kinetic and thermodynamic stability arguments. This model is readily employed for complex aromatics of the sort to be considered for asphaltenes. In the present research we prove that the aromaticity of CPPAHs can be assessed by using the qualitative easy-to-apply Y-rule. In the literature, it is proven that the Y-rule is applicable to elucidate the aromaticity of benzenoid PAHs and it has been validated for pericondensed benzenoid PAHs but not for pericondensed CPPAHs. Here, we verify that it is applicable for CPPAHs. The applicability of the Y-rule has been theoretically proven by comparing the π-electronic distribution obtained with it with the one obtained from nucleus-independent chemical shift (NICS) calculations at the density functional theory (DFT) level. The importance of doing this is that due to the polydispersity in the composition of the oil asphaltenes, and to understand their aromatic core structure, it is necessary to be able to asses the aromaticity of many cyclopenta-fused PAHs (possibly more than 500), of different sizes (up to 15 rings between hexagons and pentagons), and different spatial rearrangements in a quick but realistic and effective way. To try to do this with NICS will be very time consuming and computationally expensive, especially in the case of big systems.

2016 ◽  
Vol 18 (31) ◽  
pp. 21746-21759 ◽  
Author(s):  
Turbasu Sengupta ◽  
Sourav Pal

The stability and electronic structure of radical attached aluminum nanoclusters are investigated using density functional theory (DFT). A comparison of thermodynamic stability and other related factors with ligated clusters is also included.


2018 ◽  
Author(s):  
Mihails Arhangelskis ◽  
Athanassis Katsenis ◽  
Novendra Novendra ◽  
Zamirbek Akimbekov ◽  
Dayaker Gandrath ◽  
...  

By combining mechanochemical synthesis and calorimetry with theoretical calculations, we demonstrate that dispersion-corrected periodic density functional theory (DFT) can accurately survey the topological landscape and predict relative energies of polymorphs for a previously inaccessible fluorine-substituted zeolitic imidazolate framework (ZIF). Experimental screening confirmed two out of three theoretically anticipated polymorphs, and the calorimetric measurements provided an excellent match to theoretically calculated energetic difference between them.<br>


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


RSC Advances ◽  
2021 ◽  
Vol 11 (38) ◽  
pp. 23477-23490
Author(s):  
Yonggang Wu ◽  
Jihua Zhang ◽  
Bingwei Long ◽  
Hong Zhang

The ZnWO4 (010) surface termination stability is studied using a density functional theory-based thermodynamic approach. The stability phase diagram shows that O-Zn, DL-W, and DL-Zn terminations of ZnWO4 (010) can be stabilized.


Author(s):  
Vladimir Tsirelson ◽  
Adam Stash

This work extends the orbital-free density functional theory to the field of quantum crystallography. The total electronic energy is decomposed into electrostatic, exchange, Weizsacker and Pauli components on the basis of physically grounded arguments. Then, the one-electron Euler equation is re-written through corresponding potentials, which have clear physical and chemical meaning. Partial electron densities related with these potentials by the Poisson equation are also defined. All these functions were analyzed from viewpoint of their physical content and limits of applicability. Then, they were expressed in terms of experimental electron density and its derivatives using the orbital-free density functional theory approximations, and applied to the study of chemical bonding in a heteromolecular crystal of ammonium hydrooxalate oxalic acid dihydrate. It is demonstrated that this approach allows the electron density to be decomposed into physically meaningful components associated with electrostatics, exchange, and spin-independent wave properties of electrons or with their combinations in a crystal. Therefore, the bonding information about a crystal that was previously unavailable for X-ray diffraction analysis can be now obtained.


Sign in / Sign up

Export Citation Format

Share Document