scholarly journals Utilizing Machine Learning for Efficient Parameterization of Coarse Grained Molecular Force Fields

Author(s):  
James McDonagh ◽  
Ardita Shkurti ◽  
David J. Bray ◽  
Richard L. Anderson ◽  
Edward O. Pyzer-Knapp

This work demonstrates the use of open literature data to force field paramterization via a novel approach applying Bayesian optimization. We have selected Dissipative Particle Dynamics (DPD) as the simulation method in this proof-of-concept work.

2019 ◽  
Author(s):  
James McDonagh ◽  
Ardita Shkurti ◽  
David J. Bray ◽  
Richard L. Anderson ◽  
Edward O. Pyzer-Knapp

This work demonstrates the use of open literature data to force field paramterization via a novel approach applying Bayesian optimization. We have selected Dissipative Particle Dynamics (DPD) as the simulation method in this proof-of-concept work.


Soft Matter ◽  
2021 ◽  
Author(s):  
Rakesh K Vaiwala ◽  
Ganapathy Ayappa

A coarse-grained force field for molecular dynamics simulations of native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by...


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
P. M. Pieczywek ◽  
W. Płaziński ◽  
A. Zdunek

Abstract In this study we present an alternative dissipative particle dynamics (DPD) parametrization strategy based on data extracted from the united-atom molecular simulations. The model of the homogalacturonan was designed to test the ability of the formation of large-scale structures via hydrogen bonding in water. The extraction of coarse-grained parameters from atomistic molecular dynamics was achieved by means of the proposed molecule aggregation algorithm based on an iterative nearest neighbour search. A novel approach to a time-scale calibration scheme based on matching the average velocities of coarse-grained particles enabled the DPD forcefield to reproduce essential structural features of homogalacturonan molecular chains. The successful application of the proposed parametrization method allowed for the reproduction of the shapes of radial distribution functions, particle velocities and diffusivity of the atomistic molecular dynamics model using DPD force field. The structure of polygalacturonic acid molecules was mapped into the DPD force field by means of the distance and angular bond characteristics, which closely matched the MD results. The resulting DPD trajectories showed that randomly dispersed homogalacturonan chains had a tendency to aggregate into highly organized 3D structures. The final structure resembled a three-dimensional network created by tightly associated homogalacturonan chains organized into thick fibres.


Author(s):  
M. Lemaalem ◽  
A. Derouiche ◽  
S. EL Fassi ◽  
H. Ridouane

Long polymer chains that mainly exhibit thermoplastic properties are recognized to demonstrate excellent thermal and mechanical features at the molecular level. For the purpose of facilitating its study, we present the results of a coarse-grained Molecular Dynamics (MD) and Dissipative Particle Dynamics (DPD) simulations under the Canonical ensemble (NVT) conditions. For each simulation method, the structure, static and dynamic properties were analyzed, with particular emphasis on the influence of density and temperature on the equilibrium of the polymer. We find, after correcting the Soft Repulsive Potential (SRP) parameters used in DPD method, that both simulation methods describe the polymer physics with the same accuracy. This proves that the DPD method can simplify the polymer simulation and can reproduce with the same precision the equilibrium obtained in the MD simulation.


2013 ◽  
Vol 12 (01) ◽  
pp. 1250100 ◽  
Author(s):  
EROL YILDIRIM ◽  
MINE YURTSEVER

Poly (para-phenylene)s (PPP) and polypyrroles (PPy) are important members of the conducting polymers. Rod–coil type diblock copolymers formed by coupling of PPP and PPy rigid blocks with polycaprolactone (PCL), polystyrene (PS) and polymethylmethacrylate (PMMA) coil blocks were modeled and morphological properties have been studied by a coarse grained simulation method at the mesoscale. Geometry optimizations and the atomic charge calculations were done quantum mechanically to obtain the input parameters for the mesoscale dynamics simulations. The accurate mixing energies and the Flory–Huggins interaction parameters between the monomers of polymers were calculated and used to study the phase behaviors and the morphologies of the copolymers as a function of type and weight percentages of the blocks by Dissipative Particle Dynamics (DPD) simulations. We showed that the methodology employed took into account not only the interaction parameter and chain length of the blocks but also the chemical structure of the polymers and it could be used to produce the phase diagram of the copolymers which has importance for the industrial applications of such materials. Among the studied copolymers, the most suitable one for thin layer applications was predicted to be PPP–b–PCL in which PPP forms lamellar and cylindrical phases in the PCL matrix if amount of PPP rod block is below 50 wt%.


2021 ◽  
Author(s):  
Rakesh Vaiwala ◽  
K. Ganapathy Ayappa

A coarse-grained force field for molecular dynamics simulations of native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by mapping the bonds and angles for 20 amino acids onto target distributions obtained from fully atomistic simulations in explicit solvent. A dual-basin potential is introduced for stabilizing backbone angles, to cover a wide spectrum of protein secondary structures. The backbone dihedral potential enables folding of the protein from an unfolded initial state to the folded native structure. The proposed force field is validated by evaluating structural properties of several model peptides and proteins including the SARS-CoV-2 fusion peptide, consisting of α-helices, β-sheets, loops and turns. Detailed comparisons with fully atomistic simulations are carried out to assess the ability of the proposed force field to stabilize the different secondary structures present in proteins. The compact conformations of the native states were evident from the radius of gyration as well as the high intensity peaks of the root mean square deviation histograms, which were found to lie below 0.4 nm. The Ramachandran-like energy landscape on the phase space of backbone angles (θ) and dihedrals (ϕ) effectively captured the conformational phase space of α-helices at ~(ϕ=50°, θ=90°) and β-strands at ~(ϕ=±180°, θ=90°-120°). Furthermore, the residue-residue native contacts are also well reproduced by the proposed DPD model. The applicability of the model to multidomain complexes is assessed using lysozyme as well as a large α helical bacterial pore-forming toxin, cytolysin A. Our studies illustrate that the proposed force field is generic, and can potentially be extended for efficient in-silico investigations of membrane bound polypeptides and proteins using DPD simulations.


2013 ◽  
Vol 12 (02) ◽  
pp. 1250111 ◽  
Author(s):  
HAILONG XU ◽  
QIUYU ZHANG ◽  
HEPENG ZHANG ◽  
BAOLIANG ZHANG ◽  
CHANGJIE YIN

Dissipative particle dynamics (DPD) was initially used to simulate the polystyrene/nanoparticle composite microspheres (PNCM) in this paper. The coarse graining model of PNCM was established. And the DPD parameterization of the model was represented in detail. The DPD repulsion parameters were calculated from the cohesive energy density which could be calculated by amorphous modules in Materials Studio. The equilibrium configuration of the simulated PNCM shows that the nanoparticles were actually "modified" with oleic acid and the modified nanoparticles were embedded in the bulk of polystyrene. As sodium dodecyl sulfate (SDS) was located in the interface between water and polystyrene, the hydrophilic head of SDS stretched into water while the hydrophobic tailed into polystyrene. All simulated phenomena were consistent with the experimental results in preparation of polystyrene/nanoparticles composite microspheres. The effect of surface modification of nanoparticles on its dispersion in polystyrene matrix was also studied by adjusting the interaction parameters between the OA and NP beads. The final results indicated that the nanoparticles removed from the core of composite microsphere to the surface with increase of a OA-NP . All the simulated results demonstrated that our coarse–grained model was reasonable.


2021 ◽  
Author(s):  
Theresa Reiker ◽  
Monica Golumbeanu ◽  
Andrew Shattock ◽  
Lydia Burgert ◽  
Thomas A. Smith ◽  
...  

AbstractIndividual-based models have become important tools in the global battle against infectious diseases, yet model complexity can make calibration to biological and epidemiological data challenging. We propose a novel approach to calibrate disease transmission models via a Bayesian optimization framework employing machine learning emulator functions to guide a global search over a multi-objective landscape. We demonstrate our approach by application to an established individual-based model of malaria, optimizing over a high-dimensional parameter space with respect to a portfolio of multiple fitting objectives built from datasets capturing the natural history of malaria transmission and disease progression. Outperforming other calibration methodologies, the new approach quickly reaches an improved final goodness of fit. Per-objective parameter importance and sensitivity diagnostics provided by our approach offer epidemiological insights and enhance trust in predictions through greater interpretability.One Sentence SummaryWe propose a novel, fast, machine learning-based approach to calibrate disease transmission models that outperforms other methodologies


2019 ◽  
Vol 59 (10) ◽  
pp. 4278-4288 ◽  
Author(s):  
James L. McDonagh ◽  
Ardita Shkurti ◽  
David J. Bray ◽  
Richard L. Anderson ◽  
Edward O. Pyzer-Knapp

Sign in / Sign up

Export Citation Format

Share Document