scholarly journals Isoquinoline-Based Biaryls as a Robust Scaffold for Microtubule Inhibitors

2019 ◽  
Author(s):  
Yvonne Kraus ◽  
Carina Glas ◽  
Benedikt Melzer ◽  
Li Gao ◽  
Constanze Heise ◽  
...  

<div> <div> <div> <div> <p>We here report the discovery of isoquinoline-based biaryls as a new scaffold for colchicine domain tubulin inhibitors. Colchicine domain inhibitors comprise a structurally diverse class of compounds offering highly desirable cytotoxic and vascular disrupting bioactivities. Current research on colchicine domain inhibitors is focused on improving in vivo robustness and tolerability: properties that are inextricably linked to the scaffold structure employed. The isoquinoline-based biaryl scaffold we now report offers high-potency tubulin inhibition with excellent robustness and druglikeness, allowing solubility, in vivo tolerability and facile late-stage structural diversification through a tolerant synthetic route. We have confirmed the tubulin-binding properties and mechanism of these isoquinoline-based biaryls through a series of cellular tests and established safe in vivo dosing parameters in mice. By addressing several problems facing the current families of inhibitors, we thus expect that this new scaffold will find a range of powerful in vivo applications towards translational use in cancer therapy. </p> </div> </div> </div> </div>

2019 ◽  
Author(s):  
Yvonne Kraus ◽  
Carina Glas ◽  
Benedikt Melzer ◽  
Li Gao ◽  
Constanze Heise ◽  
...  

<div> <div> <div> <div> <p>We here report the discovery of isoquinoline-based biaryls as a new scaffold for colchicine domain tubulin inhibitors. Colchicine domain inhibitors comprise a structurally diverse class of compounds offering highly desirable cytotoxic and vascular disrupting bioactivities. Current research on colchicine domain inhibitors is focused on improving in vivo robustness and tolerability: properties that are inextricably linked to the scaffold structure employed. The isoquinoline-based biaryl scaffold we now report offers high-potency tubulin inhibition with excellent robustness and druglikeness, allowing solubility, in vivo tolerability and facile late-stage structural diversification through a tolerant synthetic route. We have confirmed the tubulin-binding properties and mechanism of these isoquinoline-based biaryls through a series of cellular tests and established safe in vivo dosing parameters in mice. By addressing several problems facing the current families of inhibitors, we thus expect that this new scaffold will find a range of powerful in vivo applications towards translational use in cancer therapy. </p> </div> </div> </div> </div>


2021 ◽  
Vol 9 (8) ◽  
pp. e003246
Author(s):  
Casey R Ager ◽  
Akash Boda ◽  
Kimal Rajapakshe ◽  
Spencer Thomas Lea ◽  
Maria Emilia Di Francesco ◽  
...  

BackgroundIntratumoral injection of cyclic dinucleotide (CDN) agonists of the stimulator of interferon genes (STING) pathway engages innate immune activation and priming of adaptive immune effectors to foster local and distal tumor clearance. Despite proven therapeutic efficacy in preclinical models, a thorough understanding of how CDNs reprogram suppressive myeloid stroma in mouse and man is lacking.MethodsHere, we perform deep transcript-level and protein-level profiling of myeloid-derived suppressor cells and M2 macrophages following stimulation with CDNs of ascending potency. Additionally, we leverage orthotopic Kras+/G12DTP53+/R172HPdx1-Cre (KPC) derived models of pancreatic adenocarcinoma (PDAC) to determine the capacity for locally administered CDNs to sensitize PDAC to immune checkpoint blockade. We use bioluminescent in vivo imaging and 30-parameter flow cytometry to profile growth kinetics and remodeling of the tumor stroma post-therapy.ResultsHighly potent synthetic STING agonists repolarize suppressive myeloid populations of human and murine origin in part through inhibition of Myc signaling, metabolic modulation, and antagonism of cell cycle. Surprisingly, high-potency synthetic agonists engage qualitatively unique pathways as compared with natural CDNs. Consistent with our mechanistic observations, we find that intratumoral injection of the highest activity STING agonist, IACS-8803, into orthotopic pancreatic adenocarcinoma lesions unmasks sensitivity to checkpoint blockade immunotherapy. Dimensionality reduction analyses of high parameter flow cytometry data reveals substantial contributions of both myeloid repolarization and T cell activation underlying the in vivo therapeutic benefit of this approach.ConclusionsThis study defines the molecular basis of STING-mediated myeloid reprogramming, revealing previously unappreciated and qualitatively unique pathways engaged by CDNs of ascending potency during functional repolarization. Furthermore, we demonstrate the potential for high potency CDNs to overcome immunotherapy resistance in an orthotopic, multifocal model of PDAC.


2007 ◽  
Vol 336-338 ◽  
pp. 1545-1548
Author(s):  
Lin Luo ◽  
Guang Fu Yin ◽  
Yun Zhang ◽  
Ya Dong Yao ◽  
Wei Zhong Yang ◽  
...  

Porous biodegradable scaffolds are widely used in bone tissue engineering to provide temporary templates for cellular attachment and matrix synthesis. Ideally, the degradation rate in vivo may be similar or slightly less than that of tissue formation, allowing for the maintenance of the scaffold structure and the mechanical support during early stages of tissue formation. Eventually, the 3-D spaces occupied by the porous scaffolds will be replaced by newly formed tissue. In this work, β-tricalcium phosphate/Poly-L lactide (β-TCP/PLLA) scaffolds with different proportions of β-TCP to PLLA were investigated. The effects of β-TCP proportions on degradation rate and mechanical strengths of the scaffolds were evaluated in simulated body fluid (SBF) at 37°C up to 42 days. Results show that: different proportions of β-TCP to PLLA have significant influence on degradation behaviors of the scaffolds, and mechanical strengths of the scaffolds with weight proportion of β-TCP to PLLA being 2 to 1 are much higher than those of the others during the degradation period. And in this period, the scaffolds biodegrade slowly, and Hydroxyl Carbonate Apatite (HCA) forms in the surface of the material.


2021 ◽  
Vol 9 (4) ◽  
pp. 55
Author(s):  
Joshua Mallen ◽  
Manisha Kalsan ◽  
Peyman Zarrineh ◽  
Laure Bridoux ◽  
Shandar Ahmad ◽  
...  

The highly conserved HOX homeodomain (HD) transcription factors (TFs) establish the identity of different body parts along the antero–posterior axis of bilaterian animals. Segment diversification and the morphogenesis of different structures is achieved by generating precise patterns of HOX expression along the antero–posterior axis and by the ability of different HOX TFs to instruct unique and specific transcriptional programs. However, HOX binding properties in vitro, characterised by the recognition of similar AT-rich binding sequences, do not account for the ability of different HOX to instruct segment-specific transcriptional programs. To address this problem, we previously compared HOXA2 and HOXA3 binding in vivo. Here, we explore if sequence motif enrichments observed in vivo are explained by binding affinities in vitro. Unexpectedly, we found that the highest enriched motif in HOXA2 peaks was not recognised by HOXA2 in vitro, highlighting the importance of investigating HOX binding in its physiological context. We also report the ability of HOXA2 and HOXA3 to heterodimerise, which may have functional consequences for the HOX patterning function in vivo.


1990 ◽  
Vol 20 (3) ◽  
pp. 301-306 ◽  
Author(s):  
Robert D. McQuade ◽  
Kimberly Richlan ◽  
Ruth A. Duffy ◽  
Richard E. Chipkin ◽  
Allen Barnett

Author(s):  
Pingping Jia ◽  
Yi Zhang ◽  
Jian Xu ◽  
Mei Zhu ◽  
Shize Peng ◽  
...  

Abstract Background Resistance to anti-tuberculosis (TB) drug is a major issue in TB control, and demands the discovery of new drugs targeting virulence factor ESX-1. Methods We first established a high-throughput screen (HTS) assay for the discovery of ESX-1 secretion inhibitors. The positive hits were then evaluated for the potency of diminishing the survival of virulent mycobacterium and reducing bacterial virulence. We further investigated the probability of inducing drug-resistance and the underlying mechanism using M-PFC. Results A robust HTS assay was developed to identify small molecules that inhibit ESX-1 secretion without impairing bacterial growth in vitro. A hit named IMB-BZ specifically inhibits the secretion of CFP-10 and reduces virulence in an ESX-1-dependent manner, therefore resulting in significant reduction in intracellular and in vivo survival of mycobacteria. Blocking the CFP-10-EccCb1 interaction directly or indirectly underlies the inhibitory effect of IMB-BZ on the secretion of CFP-10. Importantly, our finding shows that the ESX-1 inhibitors pose low risk of drug resistance development by mycobacteria in vitro as compared with traditional anti-TB drug, and exhibit high potency against chronic mycobacterial infection. Conclusion Targeting ESX-1 may lead to the development of novel therapeutics for tuberculosis. IMB-BZ holds the potential for future development into a new anti-TB drug.


Sign in / Sign up

Export Citation Format

Share Document