Atomistic Insight into the Host-Guest Interaction of a Photo-Responsive Metal-Organic Framework

2019 ◽  
Author(s):  
Elena Kolodzeiski ◽  
Saeed Amirjalayer

<p>Photo-responsive functional materials have gained increasing attention due to their externally tunable properties. Molecular switches embedded in these materials enable to control phenomena at the atomic level by light. Metal-Organic Frameworks (MOFs) provide a versatile platform to immobilize these photo-responsive units within defined molecular environments to optimize the intended functionality. For the application of these photo-responsive MOFs (pho-MOFs), it is crucial to understand the influence of the switching state on the host-guest interaction. Therefore, we present a detailed insight into the impact of molecular switching the intermolecular interaction. By performing atomistic simulations, we revealed that due to different interactions of the guest molecules with the two isomeric states of an azobenzene-functionalized MOF, both the adsorption sites and the orientation of the molecules within the pores are modulated. By shedding light on the host-guest interaction, our study highlights the unique potential of pho-MOFs to tailor molecular interaction by light.</p>

2019 ◽  
Author(s):  
Elena Kolodzeiski ◽  
Saeed Amirjalayer

<p>Photo-responsive functional materials have gained increasing attention due to their externally tunable properties. Molecular switches embedded in these materials enable to control phenomena at the atomic level by light. Metal-Organic Frameworks (MOFs) provide a versatile platform to immobilize these photo-responsive units within defined molecular environments to optimize the intended functionality. For the application of these photo-responsive MOFs (pho-MOFs), it is crucial to understand the influence of the switching state on the host-guest interaction. Therefore, we present a detailed insight into the impact of molecular switching the intermolecular interaction. By performing atomistic simulations, we revealed that due to different interactions of the guest molecules with the two isomeric states of an azobenzene-functionalized MOF, both the adsorption sites and the orientation of the molecules within the pores are modulated. By shedding light on the host-guest interaction, our study highlights the unique potential of pho-MOFs to tailor molecular interaction by light.</p>


2018 ◽  
Vol 6 (26) ◽  
pp. 12466-12474 ◽  
Author(s):  
Hongjin Xue ◽  
Zhaolin Na ◽  
Yingqiang Wu ◽  
Xuxu Wang ◽  
Qian Li ◽  
...  

The uniqueness of the Co3O4/N-doped carbon nanospheres derived from a metal–organic framework offers new functional materials for lithium (ion) battery applications.


2008 ◽  
Vol 73 (1) ◽  
pp. 24-31
Author(s):  
Dayu Wu ◽  
Genhua Wu ◽  
Wei Huang ◽  
Zhuqing Wang

The compound [Cd(4,4'-bpy)2(H2O)2](ClO4)2·(L)2 was obtained by the reaction of Cd(ClO4)2, bis(1-pyrazinylethylidene)hydrazine (L) and 4,4'-bipyridine in aqueous MeOH. Single-crystal X-ray diffraction has revealed its two-dimensional metal-organic framework. The 2-D layers superpose on each other, giving a channel structure. The square planar grids consist of two pairs of shared edges with Cd(II) ion and a 4,4'-bipyridine molecule each vertex and side, respectively. The square cavity has a dimension of 11.817 × 11.781 Å. Two guest molecules of bis(1-pyrazinylethylidene)hydrazine are clathrated in every hydrophobic host cavity, being further stabilized by π-π stacking and hydrogen bonding. The results suggest that the hydrazine molecules present in the network serve as structure-directing templates in the formation of crystal structures.


2021 ◽  
Vol 5 (4) ◽  
pp. 101
Author(s):  
Menglian Wei ◽  
Yu Wan ◽  
Xueji Zhang

Metal-organic framework (MOF) based stimuli-responsive polymers (coordination polymers) exhibit reversible phase-transition behavior and demonstrate attractive properties that are capable of altering physical and/or chemical properties upon exposure to external stimuli, including pH, temperature, ions, etc., in a dynamic fashion. Thus, their conformational change can be imitated by the adsorption/desorption of target analytes (guest molecules), temperature or pressure changes, and electromagnetic field manipulation. MOF-based stimuli responsive polymers have received great attention due to their advanced optical properties and variety of applications. Herein, we summarized some recent progress on MOF-based stimuli-responsive polymers (SRPs) classified by physical and chemical responsiveness, including temperature, pressure, electricity, pH, metal ions, gases, alcohol and multi-targets.


2021 ◽  
Author(s):  
Xiu-Yuan Li ◽  
Wang Ying-Bo ◽  
Song Yan ◽  
Xiang Dan ◽  
Chaozheng He

Abstract A new porous metal-organic framework, [Pb5(Ac)7(nIm)3]n (1), has been successfully synthesized by employing 2-nitroimidazole ligand and Pb2+ ion. 1 contains novel the ribbon-shaped Pb-O SBU and reveals a 2D porous framework with a 1D tubular channel. Moreover, 1 shows moderate adsorption uptake towards CO2 and luminescence properties from intraligand charge transfer. We further confirmed nitro group and metal ion are important adsorption sites by GCMC simulations, and the electronic structures of 1 was investigated.


2019 ◽  
Author(s):  
Jonathan Carney ◽  
David Roundy ◽  
Cory M. Simon

Metal-organic frameworks (MOFs) are modular and adjustable nano-porous materials with applications in gas storage, separations, and sensing. Flexible/dynamic components that respond to adsorbed gas can give MOFs unique or enhanced adsorption properties. Here, we explore the adsorption properties that could be imparted to a MOF by a rotaxane molecular shuttle (RMS) in its pores. In an RMS-MOF, a macrocyclic wheel is mechanically interlocked with a strut. The wheel shuttles between stations on the strut that are also gas adsorption sites. We pose and analyze a simple statistical thermodynamic model of gas adsorption in an RMS-MOF that accounts for (i) wheel/gas competition for sites on the strut and (ii) the entropy endowed by the shuttling wheel. We determine how the amount of gas adsorbed, position of the wheel, and energy change upon adsorption depend on temperature, pressure, and the interactions of the gas/wheel with the stations. Our model reveals that, compared to an ordinary Langmuir material, the chemistry of the RMS-MOF can be tuned to render adsorption more or less temperature-sensitive and release more or less heat upon adsorption. The model also uncovers a non-monotonic relationship between temperature and the position of the wheel if gas out-competes the wheel for its preferable station.


2021 ◽  
Author(s):  
Adam Sapnik ◽  
Christopher W. Ashling ◽  
Lauren K. Macreadie ◽  
Seok J. Lee ◽  
Tim Johnson ◽  
...  

<div><p>Disordered metal–organic frameworks are emerging as an attractive class of functional materials, however their applications in gas storage and separation have yet to be fully explored. Here, we investigate gas adsorption in the topologically disordered Fe-BTC framework and its crystalline counterpart, MIL‑100. Despite their similar chemistry and local structure, they exhibit very different sorption behaviour towards a range of industrial gases, noble gases and hydrocarbons. Virial analysis reveals that Fe-BTC has enhanced interaction strength with guest molecules compared to MIL‑100. Most notably, we observe striking discrimination between the adsorption of C<sub>3</sub>H<sub>6</sub> and C<sub>3</sub>H<sub>8</sub> in Fe‑BTC, with over a twofold increase in the amount of C<sub>3</sub>H<sub>6</sub> being adsorbed than C<sub>3</sub>H<sub>8</sub>. Thermodynamic selectivity towards a range of industrially relevant binary mixtures is probed using ideal adsorbed solution theory (IAST). Together, this suggests the disordered material may possess powerful separation capabilities that are rare even amongst crystalline frameworks.</p></div>


2013 ◽  
Vol 135 (15) ◽  
pp. 5782-5792 ◽  
Author(s):  
Richard F. D’Vries ◽  
Victor A. de la Peña-O’Shea ◽  
Natalia Snejko ◽  
Marta Iglesias ◽  
Enrique Gutiérrez-Puebla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document