scholarly journals The Dissociation Rate of Acetylacetonate Ligands Governs the Size of Ferrimagnetic Zinc Ferrite Nanocubes

Author(s):  
Aidin Lak ◽  
Tamara Kahmann ◽  
Simon Jakob Schaper ◽  
Jaroslava Obel ◽  
Frank Ludwig ◽  
...  

Magnetic nanoparticles are critical to a broad range of applications, from medical diagnostics and therapeutics to biotechnological processes and single molecule manipulation. To advance these applications, facile and robust routes to synthesize highly magnetic nanoparticles over a wide size range are needed. Here, we demonstrate that changing the degassing temperature of thermal decomposition of metal acetylacetonate precursors from 90 to 25°C tunes the size of ferrimagnetic Zn<sub>x</sub>Fe<sub>3-x</sub>O<sub>4</sub> nanocubes from 25 to 100 nm, respectively. We show that degassing at 90°C nearly entirely removes acetylacetone ligands from the reaction, which results in an early formation of monomers and a reaction-controlled growth following LaMer's model towards small nanocubes. In contrast, degassing at 25°C only partially dissociates acetylacetone ligands from the metal center and triggers a delayed formation of monomers, which leads to intermediate assembled structures made of tiny irregular crystallites and an eventual formation of large nanocubes via a diffusion-controlled growth mechanism. Using complementary techniques, we determine the substitution fraction x of Zn<sup>2+</sup> to be in the range of 0.35-0.37. Our method reduces the complexity of the thermal decomposition method by narrowing the synthesis parameter space to a single physical parameter and enables fabrication of highly magnetic and uniform zinc ferrite nanocubes over a broad size range. The resulting particles are promising for a range of applications, from magnetic fluid hyperthermia to actuation of macromolecules.

2019 ◽  
Author(s):  
Aidin Lak ◽  
Tamara Kahmann ◽  
Simon Jakob Schaper ◽  
Jaroslava Obel ◽  
Frank Ludwig ◽  
...  

Magnetic nanoparticles are critical to a broad range of applications, from medical diagnostics and therapeutics to biotechnological processes and single molecule manipulation. To advance these applications, facile and robust routes to synthesize highly magnetic nanoparticles over a wide size range are needed. Here, we demonstrate that changing the degassing temperature of thermal decomposition of metal acetylacetonate precursors from 90 to 25°C tunes the size of ferrimagnetic Zn<sub>x</sub>Fe<sub>3-x</sub>O<sub>4</sub> nanocubes from 25 to 100 nm, respectively. We show that degassing at 90°C nearly entirely removes acetylacetone ligands from the reaction, which results in an early formation of monomers and a reaction-controlled growth following LaMer's model towards small nanocubes. In contrast, degassing at 25°C only partially dissociates acetylacetone ligands from the metal center and triggers a delayed formation of monomers, which leads to intermediate assembled structures made of tiny irregular crystallites and an eventual formation of large nanocubes via a diffusion-controlled growth mechanism. Using complementary techniques, we determine the substitution fraction x of Zn<sup>2+</sup> to be in the range of 0.35-0.37. Our method reduces the complexity of the thermal decomposition method by narrowing the synthesis parameter space to a single physical parameter and enables fabrication of highly magnetic and uniform zinc ferrite nanocubes over a broad size range. The resulting particles are promising for a range of applications, from magnetic fluid hyperthermia to actuation of macromolecules.


2021 ◽  
Vol 13 (12) ◽  
pp. 14458-14469
Author(s):  
Aleksey A. Nikitin ◽  
Anton Yu Yurenya ◽  
Timofei S. Zatsepin ◽  
Ilya O. Aparin ◽  
Vladimir P. Chekhonin ◽  
...  

2008 ◽  
Vol 23 (12) ◽  
pp. 3303-3308 ◽  
Author(s):  
Chien-Neng Liao ◽  
Ching-Hua Lee

Reactions of molten Sn–xCu (x = 0.05 to 1.0) alloys with Te substrate at 250 °C were investigated. A dosage of 0.1 wt% Cu in Sn is found to be effective in suppressing the vigorous Sn/Te reaction by forming a thin CuTe at the solder/Te interface. The CuTe morphology changes from irregular clusters into a layered structure with increasing Cu content in Sn. With the same reaction time, the CuTe thickness increases proportionally to the square root of Cu content in Sn–Cu alloys, suggesting a diffusion-controlled growth for CuTe.


2002 ◽  
Vol 731 ◽  
Author(s):  
Z. Guo ◽  
W. Sha

AbstractVarious theories have been developed to describe the diffusion-controlled growth of precipitates with shapes approximating needles or plates. The most comprehensive one is due to Ivantsov, Horvay and Cahn, and Trivedi (HIT theory), where all the factors that may influence the precipitate growth, i.e. diffusion, interface kinetics and capillarity, are accounted for within one equation. However, HIT theory was developed based on assumptions that transformation strain/stress and interfacial free energy are isotropic, which are not true in most of the real systems. An improved growth theory of precipitates of needle and plate shapes was developed in the present study. A new concept, the compression ratio, was introduced to account for influences from the anisotropy of transformation strain/stress and interfacial free energy on the precipitate morphology. Experimental evidence supports such compression effect. Precipitate growth kinetics were quantified using this concept. The improved HIT theory (IHIT theory) was then applied to study the growth of Widmanstatten austenite in ferrite in Fe-C-Mn steels. The calculated results agree well with the experimental observations.


2014 ◽  
Vol 43 (32) ◽  
pp. 12236-12242 ◽  
Author(s):  
Zachary J. Huba ◽  
Everett E. Carpenter

Presented is a detailed study of the decomposition of late row 3d metal dicarboxylate complexes. It is shown that these complexes can be efficient single molecule precursors for the formation of carbide crystal phases.


Sign in / Sign up

Export Citation Format

Share Document