Sensitive Mechanocontrolled Luminescence in Cross-Linked Polymer Films

Author(s):  
Ayumu Karimata ◽  
Pradnya Patil ◽  
Eugene Khaskin ◽  
Sébastien Lapointe ◽  
robert fayzullin ◽  
...  

Direct translation of mechanical force into changes in chemical behavior on a molecular level has important implication not only for the fundamental understanding of mechanochemical processes, but also for the development of new stimuli-responsive materials. In particular, detection of mechanical stress in polymers via non-destructive methods is important in order to prevent material failure and to study the mechanical properties of soft matter. Herein, we report that highly sensitive changes in photoluminescence intensity can be observed in response to the mechanical stretching of cross-linked polymer films when using stable, (pyridinophane)Cu-based dynamic mechanophores. Upon stretching, the luminescence intensity increases in a fast and reversible manner even at small strain (< 50%) and applied stress (< 0.1 MPa) values. Such sensitivity is unprecedented when compared to previously reported systems based on organic mechanophores. The system also allows for the detection of weak mechanical stress by spectroscopic measurements or by direct visual methods.<br>

2019 ◽  
Author(s):  
Ayumu Karimata ◽  
Pradnya Patil ◽  
Eugene Khaskin ◽  
Sébastien Lapointe ◽  
robert fayzullin ◽  
...  

Direct translation of mechanical force into changes in chemical behavior on a molecular level has important implication not only for the fundamental understanding of mechanochemical processes, but also for the development of new stimuli-responsive materials. In particular, detection of mechanical stress in polymers via non-destructive methods is important in order to prevent material failure and to study the mechanical properties of soft matter. Herein, we report that highly sensitive changes in photoluminescence intensity can be observed in response to the mechanical stretching of cross-linked polymer films when using stable, (pyridinophane)Cu-based dynamic mechanophores. Upon stretching, the luminescence intensity increases in a fast and reversible manner even at small strain (< 50%) and applied stress (< 0.1 MPa) values. Such sensitivity is unprecedented when compared to previously reported systems based on organic mechanophores. The system also allows for the detection of weak mechanical stress by spectroscopic measurements or by direct visual methods.<br>


2020 ◽  
Vol 56 (1) ◽  
pp. 50-53 ◽  
Author(s):  
Ayumu Karimata ◽  
Pradnya H. Patil ◽  
Eugene Khaskin ◽  
Sébastien Lapointe ◽  
Robert R. Fayzullin ◽  
...  

Highly sensitive mechanical stress detection is achieved by using dynamic Cu(i)-based mechanophores as cross-linkers.


2012 ◽  
Vol 22 (14) ◽  
pp. 3004-3012 ◽  
Author(s):  
Yi Liu ◽  
Jessica L. Terrell ◽  
Chen-Yu Tsao ◽  
Hsuan-Chen Wu ◽  
Vishal Javvaji ◽  
...  

Author(s):  
Gore S. A. ◽  
Gholve S. B. ◽  
Savalsure S. M. ◽  
Ghodake K. B. ◽  
Bhusnure O. G. ◽  
...  

Smart polymers are materials that respond to small external stimuli. These are also referred as stimuli responsive materials or intelligent materials. Smart polymers that can exhibit stimuli-sensitive properties are becoming important in many commercial applications. These polymers can change shape, strength and pore size based on external factors such as temperature, pH and stress. The stimuli include salt, UV irradiation, temperature, pH, magnetic or electric field, ionic factors etc. Smart polymers are very promising applicants in drug delivery, tissue engineering, cell culture, gene carriers, textile engineering, oil recovery, radioactive wastage and protein purification. The study is focused on the entire features of smart polymers and their most recent and relevant applications. Water soluble polymers with tunable lower critical solution temperature (LCST) are of increasing interest for biological applications such as cell patterning, smart drug release, DNA sequencing etc.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y Fujiwara ◽  
K Deguchi ◽  
Y Naka ◽  
M Sasaki ◽  
T Nishimoto ◽  
...  

Abstract Introduction Tissue engineering using human induced pluripotent stem cells-derived cardiomyocytes (hiPSCs-CMs) is one of the potential tools to replicate human heart in vitro. Although there are many publications on 3 dimensional (3D) heart tissues (1), these tissues show fetal like phenotypes. For that reason, several maturation methods such as electrical stimulation and mechanical stress have been investigated (2, 3). However, these methods have been inadequate in differentiating fetal like phenotype tissue from adult tissues. Previously, we identified a novel compound, T112, which induced hiPSCs-CMs maturation from approximately 9,000 compounds using Troponin I1-EmGFP and Troponin I3-mCherry double reporter hiPSCs-CMs. This compound enhanced morphological and metabolic maturation of hiPSCs-CMs via estrogen-rerated receptor gamma activation Purpose We hypothesized that our novel compound, T112, in combination with mechanical stress could result in further maturation of 3D heart tissue. Therefore, our specific aim is to develop a novel maturation method applicable to genetic disease model of HCM using 3D heart tissue combined with T112. Methods We constructed 3D heart tissue mixed with fibroblast and double reporter hiPSCs-CMs by the hydrogel methods using Flex cell system®. We added T112 with or without mechanical stretching to 3D tissue from 7 to 15 days after 3D heart tissue was constructed. Then we measured maturation related phenotype such as sarcomere gene expression, mitochondrial DNA content and cell size. Results Similar to hiPSCs-CM, the addition of T112 to the constructed 3D heart tissue significantly increased TNNI3 mRNA compared to that of DMSO. Furthermore, T112 treated 3D heart tissue showed increased cell size and oblong shape. Next, in order to promote more maturation of 3D heart tissue, we performed mechanical stretching with the addition of T112. The combination of T112 with mechanical stretching showed higher expression of mCherry, a reporter protein for TNNI3 expression, and higher isotropy of sarcomere alignment in 3D heart tissue than that with the static condition. Furthermore, 3D heart tissue in the treatment of T112 with or without mechanical stretching showed higher mitochondrial DNA content compared to the respective DMSO controls. Interestingly, we applied this combination method to hiPSCs carrying MYH7 R719Q mutation which is known to cause hypertrophic cardiomyopathy, and the 3D heart tissue composed of cardiomyocytes derived from mutant iPSCs demonstrated increased sarcomere disarray compared to isogenic wild-type 3D heart tissue. Conclusion These results suggest that the combination of T112 and mechanical stretching promotes metabolic and structural maturation of 3D heart tissue and would be useful for creating a HCM disease model. Funding Acknowledgement Type of funding source: Private company. Main funding source(s): T-CiRA project, Takeda Pharmaceutical Company Limited


2017 ◽  
Vol 70 (11) ◽  
pp. 1227 ◽  
Author(s):  
Carol Hua ◽  
Stone Woo ◽  
Aditya Rawal ◽  
Floriana Tuna ◽  
James M. Hook ◽  
...  

A series of electroactive triarylamine porous organic polymers (POPs) with furan, thiophene, and selenophene (POP-O, POP-S, and POP-Se) linkers have been synthesised and their electronic and spectroscopic properties investigated as a function of redox state. Solid state NMR provided insight into the structural features of the POPs, while in situ solid state Vis-NIR and electron paramagnetic resonance spectroelectrochemistry showed that the distinct redox states in POP-S could be reversibly accessed. The development of redox-active porous organic polymers with heterocyclic linkers affords their potential application as stimuli responsive materials in gas storage, catalysis, and as electrochromic materials.


2016 ◽  
Vol 2 (1) ◽  
pp. e1501297 ◽  
Author(s):  
Qian Zhao ◽  
Weike Zou ◽  
Yingwu Luo ◽  
Tao Xie

Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices.


2018 ◽  
Vol 30 (46) ◽  
pp. 1870345
Author(s):  
Wenjie Wang ◽  
Jiaqian Zhang ◽  
Qin Zhang ◽  
Siyu Wan ◽  
Xiaohui Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document