Deep Learning Techniques for Naskh and Nastalique Writing Style Text Recognition

2019 ◽  
Vol 7 (4) ◽  
pp. 70-76
Author(s):  
Shanky Goel ◽  
Gurpreet Singh Lehal
Author(s):  
Janarthanan A ◽  
Pandiyarajan C ◽  
Sabarinathan M ◽  
Sudhan M ◽  
Kala R

Optical character recognition (OCR) is a process of text recognition in images (one word). The input images are taken from the dataset. The collected text images are implemented to pre-processing. In pre-processing, we can implement the image resize process. Image resizing is necessary when you need to increase or decrease the total number of pixels, whereas remapping can occur when you are zooming refers to increase the quantity of pixels, so that when you zoom an image, you will see clear content. After that, we can implement the segmentation process. In segmentation, we can segment the each characters in one word. We can extract the features values from the image that means test feature. In classification process, we have to classify the text from the image. Image classification is performed the images in order to identify which image contains text. A classifier is used to identify the image containing text. The experimental results shows that the accuracy.


2022 ◽  
Vol 30 (1) ◽  
pp. 641-654
Author(s):  
Ali Abd Almisreb ◽  
Nooritawati Md Tahir ◽  
Sherzod Turaev ◽  
Mohammed A. Saleh ◽  
Syed Abdul Mutalib Al Junid

Arabic handwriting is slightly different from the handwriting of other languages; hence it is possible to distinguish the handwriting written by the native or non-native writer based on their handwriting. However, classifying Arabic handwriting is challenging using traditional text recognition algorithms. Thus, this study evaluated and validated the utilisation of deep transfer learning models to overcome such issues. Hence, seven types of deep learning transfer models, namely the AlexNet, GoogleNet, ResNet18, ResNet50, ResNet101, VGG16, and VGG19, were used to determine the most suitable model for classifying the handwritten images written by the native or non-native. Two datasets comprised of Arabic handwriting images were used to evaluate and validate the newly developed deep learning models used to classify each model’s output as either native or foreign (non-native) writers. The training and validation sets were conducted using both original and augmented datasets. Results showed that the highest accuracy is using the GoogleNet deep learning model for both normal and augmented datasets, with the highest accuracy attained as 93.2% using normal data and 95.5% using augmented data in classifying the native handwriting.


Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


Author(s):  
Ivan Himawan ◽  
Michael Towsey ◽  
Bradley Law ◽  
Paul Roe

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1551
Author(s):  
Tamoor Khan ◽  
Jiangtao Qiu ◽  
Hafiz Husnain Raza Sherazi ◽  
Mubashir Ali ◽  
Sukumar Letchmunan ◽  
...  

Agricultural advancements have significantly impacted people’s lives and their surroundings in recent years. The insufficient knowledge of the whole agricultural production system and conventional ways of irrigation have limited agricultural yields in the past. The remote sensing innovations recently implemented in agriculture have dramatically revolutionized production efficiency by offering unparalleled opportunities for convenient, versatile, and quick collection of land images to collect critical details on the crop’s conditions. These innovations have enabled automated data collection, simulation, and interpretation based on crop analytics facilitated by deep learning techniques. This paper aims to reveal the transformative patterns of old Chinese agrarian development and fruit production by focusing on the major crop production (from 1980 to 2050) taking into account various forms of data from fruit production (e.g., apples, bananas, citrus fruits, pears, and grapes). In this study, we used production data for different fruits grown in China to predict the future production of these fruits. The study employs deep neural networks to project future fruit production based on the statistics issued by China’s National Bureau of Statistics on the total fruit growth output for this period. The proposed method exhibits encouraging results with an accuracy of 95.56% calculating by accuracy formula based on fruit production variation. Authors further provide recommendations on the AGR-DL (agricultural deep learning) method being helpful for developing countries. The results suggest that the agricultural development in China is acceptable but demands more improvement and government needs to prioritize expanding the fruit production by establishing new strategies for cultivators to boost their performance.


Sign in / Sign up

Export Citation Format

Share Document