Anomaly Detection and Categorization in Cloud Environment using Deep Learning Techniques

2019 ◽  
Vol 7 (5) ◽  
pp. 211-214
Author(s):  
Nidhi Thakkar ◽  
Miren Karamta ◽  
Seema Joshi ◽  
M. B. Potdar
2021 ◽  
pp. 783-791
Author(s):  
Kartik Joshi ◽  
G. Vidya ◽  
Soumya Shaw ◽  
Abitha K. Thyagarajan ◽  
Akhil Pathak ◽  
...  

2021 ◽  
Vol 21 (3) ◽  
pp. 175-188
Author(s):  
Sumaiya Thaseen Ikram ◽  
Aswani Kumar Cherukuri ◽  
Babu Poorva ◽  
Pamidi Sai Ushasree ◽  
Yishuo Zhang ◽  
...  

Abstract Intrusion Detection Systems (IDSs) utilise deep learning techniques to identify intrusions with maximum accuracy and reduce false alarm rates. The feature extraction is also automated in these techniques. In this paper, an ensemble of different Deep Neural Network (DNN) models like MultiLayer Perceptron (MLP), BackPropagation Network (BPN) and Long Short Term Memory (LSTM) are stacked to build a robust anomaly detection model. The performance of the ensemble model is analysed on different datasets, namely UNSW-NB15 and a campus generated dataset named VIT_SPARC20. Other types of traffic, namely unencrypted normal traffic, normal encrypted traffic, encrypted and unencrypted malicious traffic, are captured in the VIT_SPARC20 dataset. Encrypted normal and malicious traffic of VIT_SPARC20 is categorised by the deep learning models without decrypting its contents, thus preserving the confidentiality and integrity of the data transmitted. XGBoost integrates the results of each deep learning model to achieve higher accuracy. From experimental analysis, it is inferred that UNSW_ NB results in a maximal accuracy of 99.5%. The performance of VIT_SPARC20 in terms of accuracy, precision and recall are 99.4%. 98% and 97%, respectively.


2021 ◽  
Vol 54 (7) ◽  
pp. 1-37
Author(s):  
Tharindu Fernando ◽  
Harshala Gammulle ◽  
Simon Denman ◽  
Sridha Sridharan ◽  
Clinton Fookes

Machine learning–based medical anomaly detection is an important problem that has been extensively studied. Numerous approaches have been proposed across various medical application domains and we observe several similarities across these distinct applications. Despite this comparability, we observe a lack of structured organisation of these diverse research applications such that their advantages and limitations can be studied. The principal aim of this survey is to provide a thorough theoretical analysis of popular deep learning techniques in medical anomaly detection. In particular, we contribute a coherent and systematic review of state-of-the-art techniques, comparing and contrasting their architectural differences as well as training algorithms. Furthermore, we provide a comprehensive overview of deep model interpretation strategies that can be used to interpret model decisions. In addition, we outline the key limitations of existing deep medical anomaly detection techniques and propose key research directions for further investigation.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Kalyani Zope ◽  
Kuldeep Singh ◽  
Sri Harsha Nistala ◽  
Arghya Basak ◽  
Pradeep Rathore ◽  
...  

Multivariate sensor data collected from manufacturing and process industries represents actual operational behavior and can be used for predictive maintenance of the plants. Anomaly detection and diagnosis, that forms an integral part of predictive maintenance, in industrial systems is however challenging due to their complex behavior, interactions among sensors, corrective actions of control systems and variability in anomalous behavior. While several statistical techniques for anomaly detection have been in use for a long time, these are not particularly suited for temporal (or contextual) anomalies that are characteristic of multivariate time series sensor data. On the other hand, several machine learning and deep learning techniques for anomaly detection gained significant interest in the recent years. Further, anomaly diagnosis that involves localization of the faults did not receive much attention. In this work, we compare the anomaly detection and diagnosis capabilities, in semi-supervised mode, of several statistical, machine learning and deep learning techniques on two systems viz. the interacting quadruple tank system and the continuous stirred tank reactor (CSTR) system both of which are representative of the complexity of large industrial systems. The techniques studied include principal component analysis (PCA), Mahalanobis distance (MD), one-class support vector machine (OCSVM), isolation forest, elliptic envelope, dense auto-encoder and long short term memory auto-encoder (LSTM AE). The study revealed that MD and LSTM-AE have the highest anomaly detection capability, followed closely by PCA and OCSVM. The above techniques also exhibited good diagnosis capability. The study indicates that statistical techniques in spite of their simplicity could be as powerful as machine learning and deep learning techniques, and may be considered for anomaly detection and diagnosis in manufacturing systems.


2020 ◽  
Vol 17 (11) ◽  
pp. 4789-4796
Author(s):  
T. S. Prabhakar ◽  
M. N. Veena

Increasing usage of smart phones involves in the developing large amount of data and high speed internet is used for transfers this large amount of data. This in-turn gives rise to the development of various attacks to hack the data. Anomaly detection in the network analyzes the pattern in the network activity and found the abnormality in the network. The accurate detection of abnormality in network helps to prevent the attackers to steal the data. Many researches were conducted to improve the performance of anomaly detection in the mobile networks. Traditional methods results for performance of anomaly detection are not much effective. Machine learning techniques are used for the anomaly detection to increase the performance. The deep learning techniques are applied to increase the detection rate and decrease the false positive. Both the techniques machine learning uses k-means and Deep learning uses Artificial Neural Network method provides the considerable performance in anomaly detection.


Sign in / Sign up

Export Citation Format

Share Document