scholarly journals Stability indicating assay method for the simultaneous estimation of Empagliflozin and Metformin HCl by RP-HPLC method

2020 ◽  
Vol 11 (3) ◽  
pp. 3933-3941
Author(s):  
Supriya Reddy K ◽  
Chandan R. S. ◽  
Sai Charan A ◽  
Akshay N

A Specific, Linear and Precise reversed phase- HPLC was developed for the simultaneous estimation of Metformin HCl and Empagliflozin and the column used is Zorbax SB Phenyl with length, Internal diameter and Particle size of 250mm, 4.6 mm and 5µm respectively. The Mobile phase is Phosphate buffer: ACN: Methanol in ratio 45:25:30. 1.0 ml/min was the used flow rate and the wavelength was adjusted to 220nm for detection. The retention time for Empagliflozin was found to be 5.5min and for Metformin was 9.3min. Both the APIs exhibited good linearity revealing correlation coefficient(R) of 0.9999. The percentage recoveries for Metformin and Empagliflozin was found to be 100.0 – 100.9% and 100.3 – 102.4% respectively which was found to be within the limit. Forced degradation studies were performed and the developed method has suitable specificity as no interference is observed with impurity spiked sample and placebo of Drug Product. The proposed drug products were subjected to various types of stress conditions according to ICH Q1 guidelines like acidic, alkaline, neutral, peroxide, and Thermal conditions. The degradation products were well resolved from the main peaks , thus indicating the stability- indicating nature of the method. The method was validated with respect to system suitability, linearity, accuracy, precision and robustness according to ICH guidelines and the proposed RP-HPLC Method was accurate, precise and linear for the simultaneous determination of Metformin and Empagliflozin in bulk and pharmaceutical formulations.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ramakrishna Kommana ◽  
Praveen Basappa

The present paper describes the development of quick stability indicating RP-HPLC method for the simultaneous estimation of codeine phosphate and chlorpheniramine maleate in the presence of its degradation products, generated from forced degradation studies. The developed method separates codeine phosphate and chlorpheniramine maleate in impurities/degradation products. Codeine phosphate and chlorpheniramine maleate and their combination drug product were exposed to acid, base, oxidation, dry heat, and photolytic stress conditions, and the stressed samples were analysed by proposed method. The proposed HPLC method utilizes the Shimadzu HPLC system on a Phenomenex C18 column (, 5 μ) using a mixture of 1% o-phosphoric acid in water : acetonitrile : methanol (78 : 10 : 12) mobile phase with pH adjusted to 3.0 in an isocratic elution mode at a flow rate of 1 mL/min, at 23°C with a load of 20 μL. The detection was carried out at 254 nm. The retention time of codeine phosphate and chlorpheniramine maleate was found to be around 3.47 min and 9.45 min, respectively. The method has been validated with respect to linearity, robustness, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ). The developed validated stability indicating HPLC method was found to be simple, accurate, and reproducible for the determination of instability of these drugs in bulk and commercial products.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
V. Ashok Chakravarthy ◽  
B. B. V. Sailaja ◽  
Avvaru Praveen Kumar

The present work was the development of a simple, efficient, and reproducible stability-indicating reverse-phase high performance liquid chromatographic (RP-HPLC) method for simultaneous determination enrofloxacin (EFX) and its degradation products including ethylenediamine impurity, desfluoro impurity, ciprofloxacin impurity, chloro impurity, fluoroquinolonic acid impurity, and decarboxylated impurity in tablet dosage forms. The separation of EFX and its degradation products in tablets was carried out on Kromasil C-18(250×4.6 mm, 5 μm) column using 0.1% (v/v) TEA in 10 mM KH2PO4(pH 2.5) buffer and methanol by linear gradient program. Flow rate was 1.0 mL min−1with a column temperature of 35°C and detection wavelength was carried out at 278 nm and 254 nm. The forced degradation studies were performed on EFX tablets under acidic, basic, oxidation, thermal, humidity, and photolytic conditions. The degraded products were well resolved from the main active drug and also from known impurities within 65 minutes. The method was validated in terms of specificity, linearity, LOD, LOQ, accuracy, precision, and robustness as per ICH guidelines. The results obtained from the validation experiments prove that the developed method is a stability-indicating method and suitable for routine analysis.


Author(s):  
Krutika Patel ◽  
Sudheer Kumar Verriboina ◽  
S.G. Vasantharaju

A simple, accurate, specific and stability-indicating RP-HPLC method was developed for simultaneous determination of chlorzoxazone, diclofenac sodium and paracetamol, using C18 Vydac Monomeric 120A (250 × 4.6mm, 5μ) at 40ºC. The mobile phase contains a mixture of 20mM potassium dihydrogen phosphate buffer (pH 6.2 adjusted with potassium hydroxide) and acetonitrile (30:70 v/v). The flow rate was 1ml/min and detection was carried out at 275nm using PDA detector. The retention time of paracetamol, chlorzoxazone and diclofenac sodium were 3.28mins, 13.27mins and 15.61mins respectively. The analytical curve was linear over a concentration range of 0.65- 6.5μg/ml for paracetamol, 1-10μg/ml for chlorzoxazone and 0.1-1μg/ml for diclofenac sodium. The drugs in bulk and tablet were subjected to acid and alkali hydrolysis, oxidation, thermal and photolytic degradation. This method can be successfully employed for simultaneous quantitative analysis of Chlorzoxazone, Diclofenac sodium and Paracetamol in bulk drug and tablet formulation.


2017 ◽  
Vol 9 (5) ◽  
pp. 121 ◽  
Author(s):  
Hemant K. Jain ◽  
Archana A. Gunjal

Objective: To develop an accurate, simple, precise and specific stability indicating RP-HPLC method for estimation of dimethyl fumarate in bulk and capsules.Methods: An Inertsil ODS (150x4.6 mm, 5µ) column and a mobile phase containing acetonitrile: potassium dihydrogen phosphate buffer pH 6.8 (50:50% v/v) was used for this study. The flow rate was maintained at 1.0 ml/min; column temperature was fixed at 35 °C and UV detection was carried out at 210 nm. The forced degradation studies were performed and method was validated with as per ICH guidelines.Results: The retention time of dimethyl fumarate was found to be 3.3±0.02 min. The value of correlation coefficient between peak area and concentration was found to be 0.9993. The mean percent recovery of dimethyl fumarate in capsules was found in the range of 99.65 to 101.64%. The results of forced degradation studies indicated that the drug was found to be stable in basic, oxidative and thermal conditions while degraded in acidic conditions.Conclusion: It can be conducted from results that the developed HPLC method is simple, accurate, precise and specific. Results of stress testing study revealed that the method is stability indicating. Thus, this method can be used for routine analysis of dimethyl fumarate capsules and check their stability.  


Author(s):  
Vaishali Mistry ◽  
Rohan Mishra

Objective: This study describes the stability-indicating reverse-phase high-performance liquid chromatography (RP-HPLC) method for simultaneous estimation of betahistine dihydrochloride and domperidone in pharmaceutical dosage forms.Methods: The proposed RP-HPLC method was developed using Shimadzu Prominence-i LC-2030 HPLC system equipped with UV detector and chromatographic operation was carried on Shim-pack C18 (250 mm×4.6 mm, 5 μ) column at a flow rate of 1 ml/min and the run time was 10 min. The mobile phase consisted of methanol and water in the ratio of 80:20% v/v and eluents were scanned using a UV detector at 244 nm.Results: The retention time of betahistine dihydrochloride and domperidone was found to be 2.3 and 3.6 min, respectively. A linearity response was observed in the concentration range of 9.6 μg/ml–22.4 μg/ml for betahistine dihydrochloride and 6–14 μg/ml for domperidone, respectively. Limit of detection and limit of quantification for betahistine dihydrochloride were 0.52 μg/ml and 1.58 μg/ml and for domperidone are 0.64 μg/ml and 1.94 μg/ml, respectively.Conclusion: The stability-indicating method was developed by subjecting drugs to stress conditions such as acid and base hydrolysis, oxidation, photo and thermal degradation, and degraded products formed were resolved successfully from samples.


Author(s):  
Ramreddy Godela ◽  
Sowjanya G

A trouble-free, simple, specific and highly sensitive stability indicating phase HPLC method was developed for concurrent assessment of Daclatasvir and Sofosbuvir in pure and in their combined tablet formulation. An effectual separation was accomplished by using XDB Phenyl (250 x 4.6mm, 5µ,100 A0) column, mobile phase composition of Acetonitrile: buffer(0.1%v/v Trifluoroaceticacid in water) (50:50 v/v) and isocratic elution at a flow rate of 1ml/min and detection wavelength of 275nm. The extreme stress conditions like hydrolysis with acid and base, peroxide oxidation, thermal decomposition were used as per ICH specifications to assess the stability of the analytes in bulk and dosage forms. The retention times of Daclatasvir and Sofosbuvir were found at 2.8 and 3.7min respectively. The proposed method has linear response in the concentration ranges from 12 to 36µg/ml and 80 to 240 µg/ml for Daclatasvir and Sofosbuvir respectively. The detection and quantification limits calculated as 2.5μg/ml and 7.8μg/ml for DCL, 5.2μg/ml and 15.8μg/ml SOF respectively. All the method validation parameters were met the acceptance limits of Q2 specifications of ICH procedures. The degradation products produced by forced degradation studies were have good resolution from Daclatasir and Sofosbuvir peaks, which represents the methods stability. The proposed RP-HPLC method was highly sensitive, precise, stability indicating and economical. That’s why the method has the capacity to employ in the pharmaceutical manufacturing of Daclatasvir and Sofosbuvir and routine analysis in quality control department.


2016 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
Megha Sharma ◽  
Neeraj Mahindroo

Objective: The objective of the present study was to develop and validate a novel stability indicating reverse phase-high performance liquid chromatography (RP-HPLC) method for determination of β-acetyldigoxin, an active pharmaceutical ingredient (API).Methods: The chromatographic separation was carried out on Agilent Technologies 1200 series HPLC system equipped with photo diode array detector and C-18 (4.6x250 mm, 5 µ) column. The mobile phase consisted of water: acetonitrile (65:35 v/v), delivered at a flow rate of 1.5 ml/min and eluents were monitored at 225 nm.Results: The retention time of β-acetyldigoxin was 9.2 min. The method was found to be linear (R2= 0.9995) in the range of 31.25-500 µg/ml. The accuracy studies showed the mean percent recovery of 101.02%. LOD and LOQ were observed to be 0.289 µg/ml and 0.965 µg/ml, respectively. The method was found to be robust and system suitability testing was also performed. Forced degradation analysis was carried out under acidic, alkaline, oxidative and photolytic stress conditions. Significant degradation was observed under tested conditions, except for oxidative condition. The method was able to separate all the degradation products within runtime of 20 min and was able to determine β-acetyldigoxin unequivocally in presence of degradation products.Conclusion: The novel, economic, rapid and simple method for analysis of β-acetyldigoxin is reported. The developed method is suitable for routine quality control and its determination as API, and in pharmaceutical formulations and stability study samples.


Author(s):  
B. Anjaneyulu Reddy ◽  
Md. Irshad Alam ◽  
Nazia Khanam ◽  
P. R. Adhakrishnanand

Objective: To develop an innovative, rapid, simple, cost effective, stability indicating reverse phase-high performance liquid chromatography (RP-HPLC) method for simultaneous estimation of ledipasvir (LP) and sofosbuvir (SB) in combination pill dosage form. Methods: The method was developed using C8 column, 250 mm x 4.6 mm, 5mm using mobile section comprising of 0.1% (v/v) orthophosphoric acid buffer at pH 2.2 and acetonitrile in the ratio of 45:55 that was pumped through the column at a flow rate of 0.8 ml/min. Temperature was maintained at 30 °C, the effluents were monitored at 260 nm with the help of usage of PDA detector. Results: The retention time of LP and SB were found to be 2.246 min and 3.502 min. The approach was found to be linear with the variety of 9-36 µg/ml and 40-240 μg/ml for LP and SB respectively, the assay of estimated compounds were found to be 99.65% and 99.73% w/v for LP and SB respectively. Conclusion: The pressured samples changed into analyzed and this proposed a technique turned into determined to be particular and stability indicating as no interfering peaks of decay compound and excipients were observed. Hence, the approach was easy and economical that may be efficiently applied for simultaneous estimation of both LP and SB in bulk and combination tablet system.


Sign in / Sign up

Export Citation Format

Share Document