scholarly journals Validated stability-indicating method for estimation of related substances of paroxetine in active pharmaceutical ingredient and its pharmaceutical dosage forms

2020 ◽  
Vol 11 (4) ◽  
pp. 8004-8011
Author(s):  
Surapuraju Pavan Kumar Raju ◽  
Raveendra Reddy J

Validated stability-indicating analytical method was established for the quantitative determination of paroxetine and its related substances in API and it’s finished product in the presence of degradation products. To prove the stability-indicating nature of the method, stress studies were carried out. The method was developed by using (Waters, symmetry C18, 250×4.6 mm, 5 μm column) employing water:THF: TFA 90:10:1 (v/v/v) as mobile phase-A and mobile phase-B consist of ACN:THF: TFA the proportion of 90:10:1 (v/v/v) in a gradient mode with a flow rate of 1.5 mL/min was chosen. The column and sample cooler were kept at 45°C and 5°C respectively and 285 nm used as detection wavelength. Significant degradation observed in alkaline conditions, whereas no signification decay in drug stability was observed in other decomposition environments. Method development as well as optimisation studies were done by analysing the samples generated in the stress studies and spiked samples. Mass balance was found to be in the range of 90.3 and 100.1%, signifying the method is stability-indicating. All earlier analysis methods for the analysis of paroxetine have not been entirely validated by considering all the degradation products. The established method validated as per ICH Q2 (R1) and considered as linear, specific, accurate, precise, rugged, robust and found to be suitable for the routine and stability analysis of the product.

2020 ◽  
Vol 11 (2) ◽  
pp. 2070-2082
Author(s):  
Narasimha Reddy G P ◽  
Sreenivasulu Reddy T ◽  
Sidda Reddy K ◽  
Shashi Kumar K N

This work is intended to thrive a stability indicating Ultra performance liquid method for the estimation of (TLM) and (HCTZ) and degradation products pharmaceutical dosage forms. Separation was carried out on Zorbax Eclipse XDB C-18(50 x 2.1 mm, 1.7 ) column using a gradient method. Mobile phase A is 10mM KH2PO4 having 1% (v/v) of and mobile phase B is used in this work. 0.5 / minute is the flow of rate and at 271nm noticed wave length is monitored. Method development trails were carried out on six different columns. For specificity, limit of quantification, limit of detection, linearity, accuracy, method precision, robustness and stability this method is validated. Correlation coefficient of the impurities is more than 0.99. Stability indicating method confirmed that there were no interference of all impurities of TLM and HCTZ. Hence, developed LC method was stability indicating and well applied for drug product stability study as well as to quality monitoring.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (08) ◽  
pp. 75-78
Author(s):  
B. S. Venkateswarlu ◽  
Prudhvi N. Sai ◽  

A simple, specific, accurate and stable reverse phase liquid chromatographic method was developed for the simultaneous determination of ticlopidine and its related impurities A and B in bulk drug and tablet dosage forms. The analysis has been performed on XTerra C18 column (250 mm×4.6 mm; 5 µ id) and mobile phase containing of methanol and pH 6.8 phosphate buffer in the ratio of 80:20 (V/V). The detection was carried at 228 nm with a flow rate of 1.0 mL/min. The retention times were found to be 8.9, 5.98 and 4.62 min for ticlopidine, impurities A and B, respectively. The method was validated according to ICH guidelines. The method was validated for specificity, precision, linearity, accuracy and robustness. The linearity range of 50-200 µg/mL for ticlopidine and 0.5-2.0 µg/mL for impurity A and B. The recoveries of ticlopidine and impurities were found to be within the range of 98-102 and the % RSD in each spiked level was found to be less than 2. The stress degradation studies confirmed that the method was effectively separate the degradation products and impurities formed in the stress studies and hence the method was found to be stability indicating method. The method can effectively quantify the standard drug ticlopidine and its impurities A and B in bulk drug and pharmaceutical formulations.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Sonoube Kombath ◽  
Issa-Bella Balde ◽  
Sandra Carret ◽  
Sofiane Kabiche ◽  
Salvatore Cisternino ◽  
...  

A stability-indicating method was validated for the determination in pharmaceutical forms of idebenone a coenzyme Q10-like compound. The assay was achieved by liquid chromatography analysis using a reversed-phase C18 column and a detector set at 480 nm. The optimized mobile phase consisted of isocratic flow rate at 1.0 mL/min for 3 min with methanol. The linearity of the assay was demonstrated in the range of 3.0 to 8.0 mg/mL with a correlation coefficientr2>0.998. The limits of detection and quantification were 0.03 and 0.05 mg/mL, respectively. The intraday and interday precisions were less than 1.0%. Accuracy of the method ranged from 98.6 to 101.5% with RSD < 0.6%. Specificity of the assay showed no interference from tablets components and breakdown products formed by alkaline, acidic, oxidative, sunlight, and high temperature conditions. This method allows accurate and reliable determination of idebenone for drug stability assay in pharmaceutical studies.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Zarna R. Dedania ◽  
Ronak R. Dedania ◽  
Navin R. Sheth ◽  
Jigar B. Patel ◽  
Bhavna Patel

The objective of the current study was to develop a validated stability-indicating assay method (SIAM) for risperidone after subjecting it to forced decomposition under hydrolysis, oxidation, photolysis, and thermal stress conditions. The liquid chromatographic separation was achieved isocratically on a symmetry C18 column (5 μm size, 250 mm × 4.6 mm i.d.) using a mobile phase containing methanol: acetonitrile (80 : 20, v/v) at a flow rate of 1 mL/min and UV detection at 280 nm. Retention time of risperidone was found to be . The method was linear over the concentration range of 10–60 μg/mL with a limit of detection and quantitation of 1.79 and 5.44 μg/mL, respectively. The method has the requisite accuracy, specificity, sensitivity, and precision to assay risperidone in bulk form and pharmaceutical dosage forms. Degradation products resulting from the stress studies did not interfere with the detection of Risperidone, and the assay is thus stability indicating.


2021 ◽  
Vol 10 (6) ◽  
pp. 3823-3826
Author(s):  
, Shyamala

Forced degradation studies and stability indicating method were developed for the estimation of Favipiravir by reverse phase High performance liquid chromatography in active Pharmaceutical ingredient and its tablet dosage form. The method was achieved by using C18 column (250 X 4.6mm X 4µm) with mobile phase mixture ortho phosphoric acid and acetonitrile in the ratio 60:40. The mobile phase was allowed to pump with the flow rate 1ml/min by maintaining detection wavelength at 324nm using ultra-violet detector. Favipiravir drug was subjected to various stress conditions according to International Conference of Harmonization Q1A(R2) guidelines to establish stability indicating method. Favipiravir drug was found to be sensitive at peroxide degradation. The impurity peak was characterized by mass spectral studies. The method was validated for analytical standards such as linearity, accuracy, Precision, sensitivity and robustness. A rapid and sensitive method was developed for the estimation of favipiravir which indicates its stability indicating behavior.


Author(s):  
Ashok Gorja ◽  
Sumanta Mondal

Objective: The present study aimed to develop a stability indicating ultra-performance liquid chromatography (UPLC) method for the estimation of panobinostat lactate in pharmaceutical dosage form and validate the method in accordance with ICH guidelines.Methods: The optimized conditions for the developed UPLC method are acquity UPLC hibar C18 (100 mm × 2.1 mm, 1.8µ) column maintained at 30°C with mobile phase consisting of 0.1% ortho phosphoric acid and acetonitrile in the ratio 50:50%v/v on isocratic mode at flow rate 0.3 ml/min. The sample was detected at 266 nm.Results: The retention time for panobinostat was found to be 1.6 min. The developed method was validated for accuracy, precision, specificity, ruggedness, robustness and solution stability. The method obeyed Beer’s law in the concentration range of 50µg/ml and 300µg/ml with correlation coefficient of 0.9998. Forced degradation studies were conducted by exposing the drug solution to various stress conditions such as acidic, basic, peroxide, neutral, photolytic and thermal conditions. The net degradation was found to be within the limits, indicating that drug is stable in stressed conditions.Conclusion: The developed method for the estimation ofpanobinostat can be utilized for the routine analysis of pharmaceutical dosage form.


Sign in / Sign up

Export Citation Format

Share Document