scholarly journals Development of analytical method and validation for determination of Lisinopril dihydrate in bulk drug and dosage form using HPTLC method

Author(s):  
Sarfaraz Khan ◽  
Furquan N. Khan ◽  
Mohammad Sadeque ◽  
Rana Zainuddin ◽  
Zahid Zaheer

A simple, reproducible and efficient High Performance Thin Layer Chromatography method was developed for Lisinopril dihydrate in bulk drug and dosage form. A constant application rate of 0.1 ml/s with nitrogen aspirator was used, and the space between two bands was 6 mm. The slit dimension was 5 × 0.45 mm, and the scanning speed was 10 mm/s. The mobile phase consisted of n-butanol: methanol: ammonia in the ratio of 3.0: 1.0: 1.0 (v/v/v). The retention time (min) and linearity range (μl) for Lisinopril was (0.20) and (1-5) respectively. The method so developed was validated for its accuracy and precision. The LOD and LOQ were found to be 0.050237 and 0.152233 for Lisinopril respectively. The accuracy was found to be 98.88%. The developed method was found to be accurate, precise and selective for determination of Lisinopril in bulk and dosage form.

Author(s):  
Kamran Ashraf ◽  
Syed Adnan Ali Shah ◽  
Mohd Mujeeb

<p><strong>Objective: </strong>A simple, sensitive, precise, and accurate stability indicating HPTLC (high-performance thin-layer chromatography) method for analysis of 10-gingerol in ginger has been developed and validated as perICH guidelines.</p><p><strong>Methods: </strong>The separation was achieved on TLC (thin layer chromatography) aluminum plates pre-coated with silica gel 60F<sub>254</sub> using n-hexane: ethyl acetate 55:45 (%, v/v) as a mobile phase. Densitometric analysis was performed at 569 nm.</p><p><strong>Results: </strong>This system was found to have a compact spot of 10-gingerol at <em>R</em><sub>F</sub> value of 0.57±0.03. For the proposed procedure, linearity (<em>r</em><sup>2</sup> = 0.998±0.02), limit of detection (18ng/spot), limit of quantification (42 ng/spot), recovery (ranging from 98.35%–100.68%), were found to be satisfactory.</p><p><strong>Conclusion: </strong>Statistical analysis reveals that the content of 10-gingerol in different geographical region varied significantly. The highest and lowest concentration of 10-gingerol in ginger was found to be present in a sample of Patna, Lucknow and Surat respectively which inferred that the variety of ginger found in Patna, Lucknow are much superior to other regions of India.</p>


Author(s):  
Mrinalini C. Damle ◽  
Swapnil S Waghmare ◽  
PURUSHOTAM SINHA

Objective: To develop and validate simple, sensitive stability indicating HPTLC (High performance thin layer chromatography) method for apixaban. Methods: The chromatographic separation was performed on aluminium plates precoated with silica gel 60 F254 using toluene: ethyl acetate: methanol (3:6:1 v/v/v) as mobile phase followed by densitometric scanning at 279 nm. Results: The chromatographic condition shows sharp peak of apixaban at Rf value of 0.38±0.03. Stress testing was carried out according to international conference on harmonization (ICH)Q1A (R2) guidelines and the method was validated as per ICH Q2(R1) guidelines. The calibration curve was found to be linear in the concentration range of 100-500 ng/band for apixaban. The limit of detection and quantification was found to be 11.66ng/bandand35.33ng/band, respectively. Conclusion: A new simple, sensitive, stability indicating high performance thin layer chromatographic (HPTLC) method has been developed and validated for the determination of apixaban.


Author(s):  
Pratheema Philomindoss

Objective: The present study is designed to develop a new simple, precise, rapid and selective high‐performance thin‐layer chromatographic (HPTLC) method for the determination of stigmasterol in methanolic rhizomes extract of Alpinia calcarata.Methods: As per International Conference on Harmonization (ICH) guidelines we have applied different concentrations of stigmasterol as standard on HPTLC plates for the quantification of stigmasterol from the Alpinia calcarata rhizomes. The concentration of standard stigmasterol is 1 mg/ml.Results: The retention factor of stigmasterol was 0.58. Linearity was obtained in the range of 50 ng‐250 ng for stigmasterol. The developed and validated HPTLC method was employed for stigmasterol in methanolic rhizomes extract of Alpinia calcarata for standardization of the content of the marker. The linear regression data for the calibration plots showed a good linear relationship with r=0.99977 for stigmasterol, respectively Satisfactory recoveries of 99.77 % were obtained for stigmasterol.Conclusion: The results obtained in validation assays indicate the accuracy and reliability of the developed HPTLC method for the quantification of stigmasterol in methanolic rhizomes extract of Alpinia calcarata


2017 ◽  
Vol 9 (6) ◽  
pp. 80
Author(s):  
H. Padh ◽  
S. Parmar ◽  
B. Patel

Objective: In the present study a novel stability-indicating high-performance thin-layer chromatography (HPTLC) method for quantitative determination of Swertiamarin (SW) in bulk drug and formulation has been developed and validated as per ICH guideline Q2 (R1) for global acceptance of standardized herbal formulations.Methods: HPTLC method is developed and validated using solvent ethyl acetate: ethanol: chloroform (3:2.5:4.5 v/v/v) (Rf of SW 0.65±0.04) in the absorbance mode at 243 nm. Various forced degradation conditions were used to check degradation of drug.Results: The method showed a good linear relationship (r2 = 0.9990) in the concentration range 200-700 ng per spot. It was found to be linear, accurate, precise and specific.Conclusion: It can be applied for quality control as well as for stability testing of different dosage forms containing swertiamarin. The developed method is validated as per ICH guideline Q2(R1) for global acceptance of standardized herbal formulations.


Author(s):  
MEHUL M PATEL ◽  
JIGISHA CHAUHAN ◽  
HARSHAL SHAH

Objective: The study aimed to development and validation of simple, precise, and reliable high-performance thin-layer chromatography (HPTLC) for the determination of terbutaline sulfate (TBS), bromhexine hydrochloride (BRH), and etophylline (ETP) in pharmaceutical dosage form. Methods: A simple, precise, rapid, and accurate HPTLC method was developed for the estimation of TBS, BRH, and ETP in pharmaceutical dosage form. Pre-coated silica gel G60 F254 aluminum sheet (10 cm2×10 cm2 and thickness 0.2 mm) was used as stationary phase while mobile phase consisting of benzene: methanol:glacial acetic acid 8:0.5:1.5 v/v/v detection at 275 nm. The present method had validated according to ICH guidelines. Results: Migration distance found 80 mm at 275 nm. The retention factor found to be 0.24, 0.57, and 0.68, respectively. The detector response was linear in the concentration range of 60–210 ng/band, 2400–8400 ng/band, and 96–336 ng/band, respectively. The linear regression equation being Y=32.20x−562.9, Y=11.79x−1711, and Y=1.756x−5636, respectively. The limit of detection for TBS 0.677 μg, for BRH 8.123 μg, and for ETP 57.915 μg and limit of quantification to be 2.053, 24.617, and 175.5 μg, respectively, were found. The developed method validated by ICH guideline, i.e., accuracy, precision, robustness, specificity, and system suitability. Conclusion: In this study, we had developed a simple, fast, and reliable HPTLC method for the determination of TBS, BRH, and ETP in pharmaceutical dosage form.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1305
Author(s):  
Prawez Alam ◽  
Faiyaz Shakeel ◽  
Mohammed H. Alqarni ◽  
Ahmed I. Foudah ◽  
Md. Faiyazuddin ◽  
...  

The greenness evaluation of literature analytical methods for pterostilbene (PT) analysis was not performed. Accordingly, the rapid, sensitive, and green/sustainable reversed-phase high-performance thin-layer chromatography (RP-HPTLC) method was developed and compared to the normal-phase (NP)-HPTLC (NP-HPTLC) for the estimation of PT with a classical univariate calibration. The RP quantification of PT was performed using green solvent systems; however, the NP analysis of PT was performed using routine solvent systems. The PT was detected at 302 nm for both of the methods. The greenness scores for the current analytical assays were evaluated by the analytical GREEnness (AGREE) metric approach. The classical univariate calibration for RP and NP methods indicated the linearity range as 10–1600 and 30–400 ng band−1, respectively. The RP method was more reliable for PT analysis compared to the NP method. The PT contents in commercial capsule dosage form were found to be 100.84% using the RP method; however, the PT contents in commercial capsule dosage form were determined as 92.59% using the NP method. The AGREE scores for RP and NP methods were 0.78 and 0.46, respectively. The sustainable RP-HPTLC assay was able to detect PT in the presence of its degradation products, and hence it can be considered as a selective and stability-indicating method. Accordingly, the RP-HPTLC method with univariate calibration has been considered as a superior method over the NP-HPTLC method for PT analysis.


2000 ◽  
Vol 83 (6) ◽  
pp. 1468-1473 ◽  
Author(s):  
Patricia Bodart ◽  
Charles Kabengera ◽  
Alfred Noirfalise ◽  
Philippe Hubert ◽  
Luc Angenot

Abstract A high-performance thin-layer chromatographic (HPTLC) method was used to determine the glycoalkaloids α-solanine and α-chaconine in potatoes. α-Solanine and α-chaconine are extracted from dehydrated potatoes with boiling methanol–acetic acid (95 + 5, v/v). The analytes are separated on a Silica Gel 60 F254 HPTLC plate by a saturated mixture of dichloromethane–methanol–water–concentrated ammonium hydroxide (70 + 30 + 4 + 0.4, v/v), which is used for vertical development of the plate up to a distance of 85 mm. For visualization, the plate is dipped 3 times into a modified Carr-Price reagent, 20% (w/v) antimony(III) chloride in acetic acid–dichloromethane (1 + 3, v/v), and subsequently heated on a hot plate at 105°C for 5 min. The glycoalkaloids all appear as red chromatographic zones on a colorless background. Densitometric quantification is performed at 507 nm by reflectance scanning. After determination of the appropriate response function, the proposed method was validated. Good results with respect to linearity, accuracy, and precision were obtained in the concentration range studied.


2020 ◽  
Vol 16 (6) ◽  
pp. 671-689
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Katarzyna Mądra-Gackowska ◽  
Piotr Kośliński ◽  
Stefan Kruszewski

At present, no one can imagine drug development, marketing and post-marketing without rigorous quality control at each stage. Only modern, selective, accurate and precise analytical methods for determination of active compounds, their degradation products and stability studies are able to assure the appropriate amount and purity of drugs administered every day to millions of patients all over the world. For routine control of drugs simple, economic, rapid and reliable methods are desirable. The major focus of current scrutiny is placed on high-performance thin layer chromatography and derivative spectrophotometry methods, which fulfill routine drug estimation’s expectations [1-4]. The present paper reveals state-of-the-art and possible applications of those methods in pharmaceutical analysis between 2010 and 2018. The review shows advantages of high-performance thin layer chromatography and derivative spectrophotometry, including accuracy and precision comparable to more expensive and time-consuming methods as well as additional fields of possible applications, which contribute to resolving many analytical problems in everyday laboratory practice.


Sign in / Sign up

Export Citation Format

Share Document