scholarly journals PRECIPITATION OF HYBRID HYDROXYAPATITE / AUTOFIBRIN NANOCOMPOSITES

Author(s):  
Илья Евгеньевич Глазов ◽  
Валентина Константиновна Крутько ◽  
Роман Алексеевич Власов ◽  
Ольга Николаевна Мусская ◽  
Людмила Викторовна Кульбицкая ◽  
...  

Синтезированы гибридные нанокомпозиты на основе гидроксиапатита и аутофибрина в форме фибринового сгустка либо цитратной плазмы путем осаждения при pH 9. «Мягкие» условия осаждения и быстрое выделение нанокомпозитов способствовали сохранению биополимерной матрицы аутофибрина. Дестабилизация дополнительной фазы аморфного фосфата кальция с образованием стехиометрического гидроксиапатита обусловлена влиянием макромолекул фибрина. Формирование кальцийдефицитного гидроксиапатита с x« 0,1 и Ca / P 1,65 происходило в среде цитратной плазмы, который после 800 °С превращался в смесь гидроксиапатит / 3 -трикальцийфосфат. Синтез композитов на основе биомиметического апатита осуществляли при добавлении 30 об.% модельного раствора Simulated Body Fluid (SBF). Влияние ионов Mg, CO~, входящих в состав SBF, способствовало стабилизации аморфного фосфата кальция и образованию карбонатзамещенного гидроксиапатита, устойчивого к термическим превращениям до 800°С. Совокупное влияние аутофибрина и ионов введенного SBF позволило управлять составом минеральной составляющей гибридных нанокомпозитов без разрушения биополимерной матрицы. Hybrid composites based on hydroxyapatite and autofibrin were synthesized by precipitation in a medium with pH = 9. Soft precipitation conditions and rapid isolation of the composite precipitates favored preservation of a biopolymer matrix of autofibrin. An effect of fibrin macromolecules contributed to destabilization of the amorphous calcium phosphate phase and formation of stoichiometric hydroxyapatite. The medium of the citrated plasma stimulated precipitation of calcium-deficient hydroxyapatite with x « 0,1 and the Ca / P ration of 1,65 which transformed into the mixture of hydroxyapatite / 3 -tricalcium phosphate at 800 °С. Biomimetic apatite composites were synthesized with an addition of 30 vol. % of a Simulated Body Fluid (SBF) model solution. The effect of Mg, CO~ ions of SBF promoted the stabilization of amorphous calcium phosphate and formation of carbonated hydroxyapatite that exhibited thermal stability up to 800 °С. The cummulative effect of autofibrin and ions of induced SBF provided controlling composition of the mineral part of hybrid nanocomposites without disruption of an autofibrin matrix.

CrystEngComm ◽  
2014 ◽  
Vol 16 (10) ◽  
pp. 1864-1867 ◽  
Author(s):  
Yan Chen ◽  
Wenjia Gu ◽  
Haihua Pan ◽  
Shuqin Jiang ◽  
Ruikang Tang

Citrate controls nucleation by association with a precursor amorphous phase, which inhibits the surface reaction for nucleation.


2009 ◽  
Vol 88 (8) ◽  
pp. 719-724 ◽  
Author(s):  
F.R. Tay ◽  
D.H. Pashley

Degradation of denuded collagen within adhesive resin-infiltrated dentin is a pertinent problem in dentin bonding. A biomimetic remineralization scheme that incorporates non-classic crystallization pathways of fluidic amorphous nanoprecursors and mesoscopic transformation has been successful in remineralizing resin-free, acid-etched dentin, with evidence of intrafibrillar and interfibrillar remineralization. This study tested the hypothesis that biomimetic remineralization provides a means for remineralizing incompletely infiltrated resin-dentin interfaces created by etch-and-rinse adhesives. The remineralization medium consists of a Portland cement/simulated body fluid that includes polyacrylic acid and polyvinylphosphonic acid biomimetic analogs for amorphous calcium phosphate dimension regulation and collagen targeting. Both interfibrillar and intrafibrillar apatites became readily discernible within the hybrid layers after 2–4 months. In addition, intra-resin apatite clusters were deposited within the porosities of the adhesive resin matrices. The biomimetic remineralization scheme provides a proof-of-concept for the adoption of nanotechnology as an alternative strategy to extend the longevity of resin-dentin bonds.


2008 ◽  
Vol 396-398 ◽  
pp. 365-368
Author(s):  
E. Gemelli ◽  
Christiane Xavier Resende ◽  
Carlos M. Lepienski ◽  
Gloria Dulce de Almeida Soares

In this study we report on the microstructure and its mechanical behavior of a Ca-P coating produced on bioactive titanium by immersion in a simplified simulated body fluid (S-SBF). The coating was probed by nanoindentation in several point times up to the formation of octacalcium phosphate (OCP). Amorphous calcium phosphate, formed after 1h of immersion in SSBF, presented the highest values of hardness (H) and elastic modulus (E). Nucleation of OCP was observed after 2-2,5h of immersion in S-SBF. From this stage on, lower values of H and E were obtained, probably due to the low dense structure of the coating.


2013 ◽  
Vol 19 (6) ◽  
pp. 1523-1534 ◽  
Author(s):  
Emilie Chalmin ◽  
Ina Reiche

AbstractBiosynthetic calcite samples were investigated using combined synchrotron X-ray microspectroscopy mapping. These samples were prepared with bacteria isolated from the Large cave of Arcy-sur-Cure in which prehistoric figures are masked by an opaque calcite layer. The biotic or abiotic origin of this layer is the issue of the present work. As previously known, a large community of bacteria may be involved in the CaCO3 formation in caves. A mixture of calcite/vaterite was obtained from bacteria isolated from the cave. Therefore, we can offer conclusions on their calcifying capability. The rare presence of vaterite in cave environments may be treated as a marker of biotic carbonate formations. Moreover, an amorphous calcium phosphate phase was present in the form of a calcite/vaterite mixture in the biotic model samples. This mixture of phases could be used as a tracer of the biotic process of CaCO3 formation. These biotic tracer phases were not identified using the applied analytical methods in the natural samples taken from the opaque calcite layers that covered the prehistoric figures of the Large cave. In this case, based on the obtained results, the biotic calcite formation process is likely to be considered as an undetectable effect at minimum.


2015 ◽  
Vol 23 (1) ◽  
pp. 1-14
Author(s):  
Sudirman Sahid ◽  
◽  
Nor Shahida Kader Bashah ◽  
Salina Sabudin ◽  
◽  
...  

1996 ◽  
Vol 270 (4) ◽  
pp. F604-F613 ◽  
Author(s):  
J. R. Asplin ◽  
N. S. Mandel ◽  
F. L. Coe

We have used published rat micropuncture data to construct a matrix of ion concentrations along the rat nephron. With an iterative computer model of known ion interactions, we calculated relative supersaturation ratios in all nephron segments. The collecting ducts and urine showed expected supersaturation with stone-forming salts. Fluid in the thin segment of the loop of Henle may be supersaturated with calcium carbonate and calcium phosphate under certain conditions. Because calculations cannot predict the actual course of crystallization, we made solutions to mimic, in vitro, presumed conditions in the loop of Henle. The solid phases that formed were analyzed by X-ray powder diffraction, electron microprobe, and infrared spectroscopy. All samples were identified as poorly crystallized or immature apatite. The descending limb of Henle's loop creates a unique condition as it extracts water but not sodium, bicarbonate, calcium, or phosphate, giving a calcium concentration at the bend of 3 mM, pH 7.4, and a phosphate concentration that varies from 0.8 to 48 mM, depending on parathyroid hormone and dietary phosphate. We conclude that conditions in the thin segment potentially could create a solid calcium phosphate phase, which may initiate nucleation of calcium oxalate salts in the collecting ducts, potentiating nephrolithiasis and nephrocalcinosis.


Sign in / Sign up

Export Citation Format

Share Document